相关性分析是一种统计方法,用于衡量两个或多个变量之间的关联程度。在照片打印推荐系统中,相关性分析可以帮助理解用户行为模式、照片特征与打印决策之间的关系。
原因:
解决方案:
# 示例:使用混合推荐策略缓解冷启动问题
from surprise import Dataset, KNNBasic
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
def hybrid_recommendation(user_id, photo_features, ratings_data):
# 协同过滤部分
trainset = ratings_data.build_full_trainset()
sim_options = {'name': 'cosine', 'user_based': False}
algo = KNNBasic(sim_options=sim_options)
algo.fit(trainset)
cf_pred = algo.predict(user_id, photo_features['id']).est
# 内容过滤部分
tfidf = TfidfVectorizer()
features_matrix = tfidf.fit_transform(photo_features['description'])
user_profile = get_user_profile(user_id) # 获取用户偏好向量
content_sim = cosine_similarity(user_profile, features_matrix)[0]
# 混合推荐
hybrid_score = 0.7 * cf_pred + 0.3 * content_sim
return hybrid_score
原因:
解决方案:
# 示例:加入时间衰减因子
import numpy as np
from datetime import datetime
def time_aware_recommendation(photo, current_date):
# 照片拍摄日期
photo_date = datetime.strptime(photo['date'], '%Y-%m-%d')
# 当前日期与照片日期的天数差
days_diff = (current_date - photo_date.date()).days
# 时间衰减因子 (半衰期设为365天)
time_factor = np.exp(-np.log(2) * days_diff / 365)
# 结合内容相关性
content_score = calculate_content_score(photo)
return content_score * time_factor
原因:
解决方案:
# 示例:使用MMR(Maximal Marginal Relevance)算法平衡相关性与多样性
def mmr_recommendation(photos, query_embedding, lambda_param=0.5):
selected = []
remaining = photos.copy()
while remaining:
# 计算相关性分数
rel_scores = [cosine_similarity(query_embedding, p['embedding']) for p in remaining]
# 计算多样性分数
if selected:
div_scores = [max(cosine_similarity(p['embedding'], s['embedding']) for s in selected) for p in remaining]
else:
div_scores = [0] * len(remaining)
# MMR分数
mmr_scores = [lambda_param * rel - (1 - lambda_param) * div for rel, div in zip(rel_scores, div_scores)]
# 选择最高分
best_idx = np.argmax(mmr_scores)
selected.append(remaining.pop(best_idx))
return selected
通过合理应用相关性分析技术,可以显著提升照片打印推荐系统的效果,增加用户满意度和业务收益。