展开

关键词

神经网络-BP神经网络

感知器作为初代神经网络,具有简单、计算量小等优点,但只能解决线性问题。 BP神经网络在感知器的基础上,增加了隐藏层,通过任意复杂的模式分类能力和优良的多维函数映射能力,解决了异或等感知器不能解决的问题,并且BP神经网络也是CNN等复杂神经网络等思想根源。 1 基本概念 BP神经网络是一种通过误差反向传播算法进行误差校正的多层前馈神经网络,其最核心的特点就是:信号是前向传播,而误差是反向传播。 2 BP神经网络结构 BP神经网络包含输入层、隐藏层和输出层,其中,隐藏层可有多个,其中,输入层和输出层的节点个数是固定的(分别是输入样本的变量个数和输出标签个数),但隐藏层的节点个数不固定。 以具有单隐藏层的BP神经网络为例,其网络结构如下图: ? 3 BP神经网络原理公式 以单隐藏层的BP神经网络为例,各阶段原理公式如下: 前向传播。

59220

黑箱方法-神经网络①人工神经网络

人工神经网络 人工神经网络的概念 人工神经网络(Artificial Neural Networks,ANN)是对一组输入信号和一组输出信号之间的关系进行建模,使用的模型来源于人类大脑对来自感觉输入的刺激是如何反应的理解 人工神经网络的构成与分类 常见的人工神经网就是这种三层人工神经网络模型,如果没有隐含层,那就是两层人工神经网络;如果有多层隐含层那就是多层人工神经网络。 小圆圈就是节点,相当于人脑的神经元。 基本构造 信息传播的方向 第一种神经网络,如上例所示,箭头用来指示信号只在一个方向上传播。 这是我们主要使用的B-P神经网络模型就是典型的前馈式神经网络模型。 另外,由于层数和每一层的节点数都可以改变,多个结果可以同时进行建模,或者可以应用多个隐藏层(这种做法有时称为深度学习 (deep learning) 第二种是反馈式神经网络,这种神经网络的特点是层间节点的连接是双向的

26330
  • 广告
    关闭

    老用户专属续费福利

    云服务器CVM、轻量应用服务器1.5折续费券等您来抽!

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    神经网络

    目录 关键词 概述 神经网络模型 1. 为了描述神经网络,我们先从最简单的神经网络讲起,这个神经网络仅由一个“神经元”构成,以下即是这个“神经元”的图示: ? 神经网络模型 所谓神经网络就是将许多个单一“神经元”联结在一起,这样,一个“神经元”的输出就可以是另一个“神经元”的输入。例如,下图就是一个简单的神经网络: ? 目前为止,我们讨论了一种神经网络,我们也可以构建另一种结构的神经网络(这里结构指的是神经元之间的联接模式),也就是包含多个隐藏层的神经网络。 这是一个前馈神经网络的例子,因为这种联接图没有闭环或回路。 神经网络也可以有多个输出单元。比如,下面的神经网络有两层隐藏层: L2及L3 ,输出层L4有两个输出单元。 ?

    61370

    神经网络

    神经网络例程下载: 神经网络.zip 介绍 如今,科学家正在努力探索人脑的奥秘,他们试图通过模仿人脑,来找到大数据的解决方案。 [v4zmj8dlgy.jpg] 我感觉现在没有深入浅出的、实用的介绍神经网络(NN)的文章。我一直想弄清楚人脑是怎么工作的,但我还有很多问题没有答案,而且总是很难把握神经网络工作的细节。 ——前向神经网络 3. 什么是神经网络的权重? 4. 生物体内的神经元权重是多少? 5. 神经网络中激励函数起什么作用? 6. 生物体内什么东西起到了神经元激励函数的功能? 7. 反向传播如何工作? 反向传播神经网络的确切的数学逻辑是什么? 9. 如何实现反向传播神经网络? 1.人脑是如何工作的? 要理解神经网络如何工作,最好先研究一下人脑的运作机理。人脑有约一千亿个神经元,彼此之间紧密相连。 为了更好地理解神经网络中的权重扮演的角色,我请您阅读我关于“机器学习和梯度下降”的文章。神经网络中的权重基本接近Y值的预测线中的斜率“a”,Y=aX+b。

    1.6K121

    神经网络

    搭建基本模块——神经元 在说神经网络之前,我们讨论一下神经元(Neurons),它是神经网络的基本单元。神经元先获得输入,然后执行某些数学运算后,再产生一个输出。比如一个2输入神经元的例子: ? 编码一个神经网络 是时候实施一个神经元了! 搭建神经网络 神经网络就是把一堆神经元连接在一起,下面是一个神经网络的简单举例: ? 这个网络有2个输入、一个包含2个神经元的隐藏层(h_1和h_2)、包含1个神经元的输出层o_1。 神经网络可以具有任意数量的层,这些层中具有任意数量的神经元。基本思想保持不变:给神经网络提供输入(input)通,然后从神经网络里面得到输出(output)。 训练一个神经网络(第一部分) 现在我们已经学会了如何搭建神经网络,现在我们来学习如何训练它,其实这就是一个优化的过程。

    23420

    神经网络

    Udacity Machine Learning Neural Networks ---- 什么是 Neural Networks? ? Perceptio...

    40550

    深度学习与神经网络:BP神经网络

    BP神经网络现在来说是一种比较成熟的网络模型了,因为神经网络对于数字图像处理的先天优势,特别是在图像压缩方面更具有先天的优势,因此,我这一段时间在研究神经网络的时候同时研究了一下关于BP网络实现图像压缩的原理和过程 ,并且是在MATLAB上进行了仿真的实验,结果发现设计的BP神经网络具有不错的泛化能力,对于用于图像压缩方面的效果还不错. 1:BP神经网络的模型的架构和训练的原理 BP神经网络是现在目前的发展的比较成熟的神经网络之一了 ,也是一种比较给力的非线性的可微分函数进行权值修正和调整的多层前馈人工神经网络,经得住严密的数学逻辑推导,在很多的模式识别的书中和很多的数据压缩的论文中得以大量的广泛和认同.BP神经网络算法主要的特点是输入信号的正向传递 而其输出的Oij如下所示,其中f是激励函数 v2-6a6b68442fec49b665763a1440cd81f6_hd.jpg 在神经网络中我们有很多的激活函数可以选择,但是我们在这里还是选择使用 参考资料: 1:数字图像处理 贾永红 2:人工神经网络导论 蒋宗礼 3:机器学习 周志华

    92390

    神经网络是什么 神经网络架构组成

    随着科技的发达,技术也在不断地提高,目前比较热门的应该就是人工智能技术,而且人工智能已经被广泛地运用到生活和工作中去,确实也给不同的领域提供了很大的便利,然而人工智能的基础就是神经网络,例如平时比较常见的自动控制 、模式识别等等,都是来自神经网络,想要了解人工智,还是要先了解神经网络是什么。 image.png 神经网络是什么 神经网络属于机器学习时使用一种模型,它是利用了动物神经网络,作为神经网络的特征,通过将这些神经网络进行合理的分布,然后再进行信息处理的算法数学模型。 神经网络架构组成 1、前馈神经网络 前馈神经网络在应用中比较常见,第一层输入、最后一层输出,当然里面会有很多的隐藏层,也就是“深神经网络神经网络是什么,在以上文中给大家做了简单的介绍,目前不同的任务还是需要使用相对应的神经网络架构,现在还是无法达到通用的人工智能,未来神经网络模型一定会在广泛的任务上表现更出色。

    21310

    神经网络体系搭建(一)——神经网络

    本篇是神经网络体系搭建的第一篇,解决体系搭建的前四个问题,详见神经网络体系搭建(序) 神经网络 ? 最简单的神经网络 神经网络的定义就不再赘述,直接从最简单的神经网络说起。 将一系列输入数据,通过训练好的网络模型处理,得到输出结果,这是神经网络决策的步骤。那么我们的重点就是通过训练得到网络模型。 ? 从上图可以看出,模型的关键其实是寻找合适的权重矩阵。 - 梯度下降用在神经网络的哪一步? 梯度下降用来找损失函数的最小值,数学原理和代码见上。 - 损失函数是干什么用的? - 神经网络模型有哪些参数可以调整(优化)? 找合适的初始权重矩阵、找合适的激活函数、找合适的损失函数、找合适的学习率。 ---- 以上内容来自822实验室神经网络知识分享 我们的822,我们的青春 欢迎所有热爱知识热爱生活的朋友和822思享实验室一起成长,吃喝玩乐,享受知识。

    519100

    神经网络体系搭建(三)——卷积神经网络

    本篇是神经网络体系搭建的第三篇,解决体系搭建的卷积神经网络相关问题,详见神经网络体系搭建(序) 卷积神经网络(CNN) ? CNN是什么 卷积神经网络是一种空间上共享参数的神经网络。 卷积神经网络模仿人识别图片(狗)的一种方法:先是特定部位,比如鼻子、嘴、眼睛……把这些拼起来得到一条狗。 在卷积操作中散步一些1x1卷积是一种使模型变更深的低耗高效的办法,并且含有更多参数,但未完全改变神经网络结构。 - 卷积神经网络是什么? 卷积神经网络是一种空间上共享参数的神经网络。 - 卷积神经网络神经网络有什么区别? 有卷积层,权重共享 - 卷积神经网络模型有哪些参数可以调整(优化)? 见上。

    88181

    神经网络学习笔记-02-循环神经网络

    神经网络学习笔记-02-循环神经网络 本文是根据WildML的Recurrent Neural Networks Tutorial写的学习笔记。 循环神经网络 循环神经网络适用于处理序列化信息,比如:语言翻译,语音识别等。 如果,我们要实现一个翻译功能。首先需要理解原句中每个单词的含义。 这就需要根据上下文来理解。 假如:原句中的每个单词,以此对应神经网络中一个隐藏层。 在传统的神经网络框架中,隐藏层直接传递的是一个矢量Out。 这个Out矢量是原句当前每个词的一个输出,比如:含义等等。 循环神经网络提出一个状态(state)的概念,用于传递上下文。 图 image.png 循环神经网络框架的一点解释 与传统的神经网络架构有许多不同之处。 隐藏层,每层的节点数不同 传统的神经网络架构,每个隐藏层有多个节点。 循环神经网络,每个隐藏层有一个节点。 输出不同 循环神经网络,每个隐藏层有两个输出: output和state。

    42570

    神经网络,凉了?

    前几年神经网络很火,相信大家对神经网络都有一定的了解。而图神经网络是直接在图上进行计算,整个计算的过程,沿着图的结构进行,这样处理的好处是能够很好的保留图的结构信息。 而能够对结构信息进行学习,正是图神经网络的能力所在。 下面我们就来看看图神经网络为什么强大? 图神经网络的应用场景自然非常多样。 据笔者所知,目前国外包括耶鲁、哈佛,国内像北大清华都有很多实验室研究图神经网络在医学方面的应用,而且我相信这会是图神经网络最有价值的应用方向之一 3. 图神经网络架构与实战训练营 01 课程安排 上课时间:3月17日,20:00-22:30 课程服务:录播+直播授课+讲师答疑+课堂笔记 Day1:Ai最前沿-图神经网络实战 图神经网络在社交网络, 图神经网络工作细节,如何利用图模型构建推理模型. 图神经网络框架Pytorch_geometric实战应用. 图模型最新研究进展分析总结. 注:本次训练营会PPT课件、课堂笔记。

    13750

    线性神经网络

    三、线性神经网络函数1.创建函数 (1)newlin函数 newlin函数用于创建一个线性层,在matlab中推荐使用linearlayer函数。 3.学习函数四、线性神经网络的局限性 线性神经网络只能反映输入和输出样本向量间的线性映射关系,和感知器神经网络一样,它也只能解决线性可分问日。 由于线性神经网络的误差曲面是一个多维抛物面,所以在学习速率足够小的情况下,对于基于最小二乘梯度下降原理进行训练总可以找到一个最优解。但是,尽管如此,对线性神经网络的训练并不一定总能达到零误差。 线性神经网络的训练性能要受网络规则和训练样本集大小的限制。 如果线性神经网络的自由度(即神经网络所有权值和阈值的个数总和)小于训练样本集中“输入-目标”向量的对数,且各样本向量线性无关,则网络训练不可能达到零误差,而只能得到一个网络误差最小的解。

    36680

    浅层神经网络

    但浅层神经网络仅包含1或2个隐藏层,这种网络也被称为人工神经网络。在这篇文章中,让我们看看什么是浅层神经网络及其在数学环境中的工作。 下图给出了一个浅层神经网络的示例,其中包含1个隐藏层,1个输入层和1个输出层。 ? 神经元 神经元是神经网络的原子单元。在给定输入的情况下,它计算输出并将该输出作为输入传递给后一层。 浅层神经网络隐含层中的神经元计算如下: ? 第四个等式计算输出层的最终输出A [2],也是整个神经网络的最终输出。 激活函数 我们知道神经网络基本上是一组数学方程和权重。为了使网络在不同场景中都有着较高的准确率,我们在网络中加入激活函数。 这些激活函数在神经网络中引入非线性特性。那么为什么要加入激活函数呢?现在假设没有激活函数,我们的神经网络可以表示为: ? 如果我们将等式1中的Z[1]的值代入等式2,那么我们得到以下等式: ?

    1.1K20

    卷积神经网络

    type=2&id=369265&auto=1&height=66"> 卷积神经网络 卷积神经网络,它们也被称作CNNs或着ConvNets,是深层神经网络领域的主力。 下图为卷积神经网络流程图:(这里看不懂没关系) 为了帮助指导你理解卷积神经网络,我们讲采用一个非常简化的例子:确定一幅图像是包含有"X"还是"O"? 这个我们用来匹配的过程就被称为卷积操作,这也就是卷积神经网络名字的由来。 这个卷积操作背后的数学知识其实非常的简单。 我们这一系列操作视为一个操作,那么就得到Relu Layer,如下: Deep Learning 最后,我们将上面所提到的卷积,池化,激活放在一起,就是下面这个样子: 然后,我们加大网络的深度,增加更多的层,就得到深度神经网络了 以上为卷积神经网络的基本算法思想。

    11420

    深度神经网络

    我们研究了深度神经网络的功能和应用。 人脑,其功能及其工作方式为创建神经网络提供了灵感。人工智能和机器学习是AI的子集,在其功能中起着至关重要的作用。 如果CAP指数大于2,则神经网络很深。 当您需要用自主工作代替人工而不影响效率时,深层神经网络将非常有用。深度神经网络的使用可以在现实生活中找到各种应用。 神经网络和深度神经网络之间有什么区别? 您可以使用计算机将神经网络与国际象棋进行比较。它具有算法,根据算法可以根据您的动作和行动来确定战术。 同时,例如,计算机可能能够向您和其他人学习,并且它可以成为一个深度神经网络。在一段时间内,与其他玩家一起玩,它会变得立于不败之地。 神经网络不是一个创新的系统,但是深度神经网络比第一个复杂得多。 神经网络需要特定的数据输入和解决方案算法,而深度神经网络可以在没有大量标记数据的情况下解决问题。 什么是深度学习神经网络

    21620

    神经网络(二)

    神经网络(二) 激活函数 参考: 感谢帮助!

    5930

    卷积神经网络

    卷积神经网络 详解 卷积神经网络沿用了普通的神经元网络即多层感知器的结构,是一个前馈网络。以应用于图像领域的CNN为例,大体结构如图。 CNN三大核心思想 卷积神经网络CNN的出现是为了解决MLP多层感知器全连接和梯度发散的问题。

    6630

    神经网络 Attention

    随着神经网络的发展,注意力模型已经被广泛的应用到自然语言处理,统计学习语音识别和计算机视觉等人工智能相关领域。 在神经网络结构中加入注意力模型主要是基于三点考虑: 首先是这些模型在众多的任务中取得了非常好的性能,比方说机器翻译、问答系统、情感分析、词性标注选民分析和问答系统。 在提升模型性能的同时,注意力机制增加了神经网络结构的可解释性。由于传统的神经网络是一个黑盒模型,因此提高其可解释性对机器学习模型的公平性、可靠性和透明性的提高至关重要。 能够帮助缓解递归神经网络中的一些缺陷,比方说随着输入序列长度的增加导致的性能下降和对输入的顺序处理所导致的计算效率低下。本文的目的在于对注意力模型进行一个简单且易理解的介绍。 然而,神经网络,尤其是深度学习结构因其不可预测性而受到批评。从可解释性的角度来看,注意力模型特别有趣,因为它允许我们直接检查深度学习体系结构的内部工作。

    5630

    bp神经网络应用实例(简述bp神经网络)

    \ nnstart – 神经网络启动GUI \ nctool – 神经网络分类工具 \ nftool – 神经网络的拟合工具 \ nntraintool – 神经网络的训练工具 \ distdelaynet – 分布时滞的神经网络。 \ elmannet – Elman神经网络。 \ feedforwardnet – 前馈神经网络。 \ timedelaynet – 时滞神经网络。 \ \ 利用网络。 \ 网络 – 创建一个自定义神经网络。 \ SIM卡 – 模拟一个神经网络。 \ 初始化 – 初始化一个神经网络。 \ 适应 – 允许一个神经网络来适应。 \ 火车 – 火车的神经网络。 \ DISP键 – 显示一个神经网络的属性。 \ nndemos – 神经网络工具箱的示威。 \ nndatasets – 神经网络工具箱的数据集。 \ nntextdemos – 神经网络设计教科书的示威。

    6630

    相关产品

    • 机器翻译

      机器翻译

      腾讯机器翻译(TMT)结合了神经机器翻译和统计机器翻译的优点,从大规模双语语料库自动学习翻译知识,实现从源语言文本到目标语言文本的自动翻译,目前可支持十余种语言的互译。

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券