首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

MxNet预训练模型到Pytorch模型的转换

预训练模型在不同深度学习框架中的转换是一种常见的任务。今天刚好DPN预训练模型转换问题,顺手将这个过程记录一下。...核心转换函数如下所示: def convert_from_mxnet(model, checkpoint_prefix, debug=False): _, mxnet_weights, mxnet_aux...: (1)创建pytorch的网络结构模型,设为model (2)利用mxnet来读取其存储的预训练模型,得到mxnet_weights; (3)遍历加载后模型mxnet_weights的state_dict...().keys (4)对一些指定的key值,需要进行相应的处理和转换 (5)对修改键名之后的key利用numpy之间的转换来实现加载。...为了实现上述转换,首先pip安装mxnet,现在新版的mxnet安装还是非常方便的。 ? 第二步,运行转换程序,实现预训练模型的转换。 ? 可以看到在相当的文件夹下已经出现了转换后的模型。

2.3K30

Objective-C中把数组中字典中的数据转换成URL

可能上面的标题有些拗口,学过PHP的小伙伴们都知道,PHP中的数组的下标是允许我们自定义的,PHP中的数组确切的说就是键值对。...在OC中我们如何把字典中的数据拼接成我们要请求的URL字符串呢?...下面有一个需求:在一个数组中有多个字典,每个字典中的数据是请求一条URL中的参数,我们需要做的就是把每个字典转换为URL,在把每个URL放在数组中返回。...arrayDic addObject:dic1]; [arrayDic addObject:dic2]; [arrayDic addObject:dic3];     ​    ​2.接下来我们要做的就是把上面可变数组中的字典中的数据转换为...4.如果不是第一个参数拼接时加上&     ​    ​    ​    ​5.把拼接好的字符串URL加入到可变数组中然后返回存有URL的数组     ​    ​    ​最终转换结果为: 1 2 3

1.8K100
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据是如何输入到神经网络中

    我们在做深度学习任务的时候,总会有这样的困惑? 比如我们做的CV项目,那么我们采集的图像数据集是如何输入到神经网络中去的呢?图像中的特征又是如何提取的呢?...相比如此便能理解图像是如何在计算机中表示的了吧。 如下图所示为图像在计算机中表示方法。 为了存储图像,计算机需要存储三个独立的矩阵,我们可理解为二维数组{{},{},{}}。...而为了更加方便后续的处理,我们一般把上面的那三个矩阵转化为一个向量X(如下图所示)。 向量可理解为1n或n1的数组。上面3个6464的矩阵转化为向量那么这个向量的总维数就是**6464*3**。...在深度学习中,每一个输入神经网络中的数据都被叫做一个特征,那么上面这个图像就有12288个特征。这个12288维的向量也被叫做特征向量。...那么对于别的数据,例如语音,传感器数据等,但是它们在计算机中都有对应的数字表示形式,通常我们会把它们转化成一个特征向量,然后将其输入到神经网络中。

    74910

    ffmpeg中avframe的YUV格式数据到OpenCV中Mat的BGR格式转换

    ffmpeg实现音视频编解码是非常常用的工具,视频解码出来的raw数据是yuv格式,用来进行后续的图像处理一般是RGB格式的。...所以需要从yuv到rgb或者bgr的转换,ffmpeg提供了相应的转换API函数: 下面代码中dec_ctx是解码器上下文,AV_PIX_FMT_BGR24是要转换成的图像数据格式,通过avpicture_get_size...()函数获取图像的数据占用空间大小,并使用av_malloc()分配一个outBuff。...将outbuff挂到video_frameBGR结构体上,并设置好格式转换上下文sws_getContext()。当然也要用OpenCV声明一个Mat 来保存最后的BGR图像。...()接口函数实现YUV格式的video_frame到BGR格式的video_frameBGR的转换,数据保存在缓冲outBuff中,从outBuff中拷贝到Mat中就得到一副BGR图像供OpenCV使用

    2.8K90

    Pandas中的数据转换

    axis参数=0时,永远表示的是处理方向而不是聚合方向,当axis='index'或=0时,对列迭代对行聚合,行即为跨列,axis=1同理 二、⭐️矢量化字符串 为什么要用str属性 文本数据也就是我们常说的字符串...get_dummies() 在分隔符上分割字符串,返回虚拟变量的DataFrame contains() 如果每个字符串都包含pattern / regex,则返回布尔数组 replace() 用其他字符串替换...Series中的每个字符串 slice_replace() 用传递的值替换每个字符串中的切片 count() 计数模式的发生 startswith() 相当于每个元素的str.startswith(pat...常用到的函数有:map、apply、applymap。 map 是 Series 中特有的方法,通过它可以对 Series 中的每个元素实现转换。...大家如果感觉可以的话,可以去做一些小练习~~ 【练习一】 现有一份关于字符串的数据集,请解决以下问题: (a)现对字符串编码存储人员信息(在编号后添加ID列),使用如下格式:“×××(名字):×国人

    13510

    Pytorch中的分布式神经网络训练

    经常,在训练这些网络时,深度学习从业人员需要使用多个GPU来有效地训练它们。在本文中,我将向您介绍如何使用PyTorch在GPU集群上设置分布式神经网络训练。 通常,分布式训练会在有一下两种情况。...在GPU之间拆分模型:如果模型太大而无法容纳在单个GPU的内存中,则需要在不同GPU之间拆分模型的各个部分。 跨GPU进行批量拆分数据。...在设置网络本身时,可以将模型的某些部分移至特定的GPU。之后,在通过网络转发数据时,数据也需要移动到相应的GPU。下面是执行相同操作的PyTorch代码段。...在向后传递过程中,将每个副本的梯度求和以生成最终的梯度,并将其应用于主gpu(上图中的GPU-1)以更新模型权重。在下一次迭代中,主GPU上的更新模型将再次复制到每个GPU设备上。...由于python中的线程存在GIL(全局解释器锁定)问题,因此这限制了完全并行的分布式训练设置。

    1.4K20

    python爬虫中 HTTP 到 HTTPS 的自动转换

    在当今互联网世界中,随着网络安全的重要性日益增加,越来越多的网站采用了 HTTPS 协议来保护用户数据的安全。然而,许多网站仍然支持 HTTP 协议,这就给我们的网络爬虫项目带来了一些挑战。...本文将介绍如何在 BeautifulSoup 项目中实现这一自动转换的功能。 协议转换的必要性 安全性:HTTPS比HTTP更安全,可以加密数据传输,防止中间人攻击和数据泄露。...数据完整性:一些网站将资源链接自动重定向到HTTPS,如果爬虫不处理HTTP到HTTPS的转换,可能导致资源加载失败,影响数据完整性。...避免重定向:HTTP到HTTPS的转换通常伴随着重定向请求,增加网络请求次数和响应时间。自动转换可提高爬虫效率。 兼容性:随着时间推移,越来越多的网站只支持HTTPS。...为了确保爬虫长期可用,自动转换HTTP到HTTPS提高了兼容性。 为了解决这些问题,我们需要一种机制来自动将 HTTP 请求转换为 HTTPS 请求,以适应不同类型的网站。

    9210

    python爬虫中 HTTP 到 HTTPS 的自动转换

    前言在当今互联网世界中,随着网络安全的重要性日益增加,越来越多的网站采用了 HTTPS 协议来保护用户数据的安全。然而,许多网站仍然支持 HTTP 协议,这就给我们的网络爬虫项目带来了一些挑战。...本文将介绍如何在 BeautifulSoup 项目中实现这一自动转换的功能。协议转换的必要性安全性:HTTPS比HTTP更安全,可以加密数据传输,防止中间人攻击和数据泄露。...数据完整性:一些网站将资源链接自动重定向到HTTPS,如果爬虫不处理HTTP到HTTPS的转换,可能导致资源加载失败,影响数据完整性。...避免重定向:HTTP到HTTPS的转换通常伴随着重定向请求,增加网络请求次数和响应时间。自动转换可提高爬虫效率。兼容性:随着时间推移,越来越多的网站只支持HTTPS。...为了确保爬虫长期可用,自动转换HTTP到HTTPS提高了兼容性。为了解决这些问题,我们需要一种机制来自动将 HTTP 请求转换为 HTTPS 请求,以适应不同类型的网站。

    41610

    Python从0到100(八十四):神经网络-卷积神经网络训练CIFAR-10数据集

    1.数据集介绍CIFAR-10 数据集由 10 个类的 60000 张 32x32 彩色图像组成,每类 6000 张图像。有 50000 张训练图像和 10000 张测试图像。...数据集分为5个训练批次和1个测试批次,每个批次有10000张图像。测试批次正好包含从每个类中随机选择的 1000 张图像。...训练批次以随机顺序包含剩余的图像,但某些训练批次可能包含来自一个类的图像多于另一个类的图像。在它们之间,训练批次正好包含来自每个类的 5000 张图像。...每个类有500个训练图像和100个测试图像。CIFAR-100中的100个子类被分为20个大类。每个图像都有一个“fine”标签(它所属的子类)和一个“coarse”标签(它所属的大类)。...return dictdict = unpickle('D:\PycharmProjects\model-fuxian\CIFAR\cifar-10-batches-py\data_batch_1')4.卷积神经网络训练此处参考

    9010

    Google:数据并行对神经网络训练用时的影响

    摘要 近年来,硬件的不断发展使数据并行计算成为现实,并为加速神经网络训练提供了解决方案。为了开发下一代加速器,最简单的方法是增加标准 minibatch 神经网络训练算法中的 batch size。...考虑到 batch size 和训练步骤之间的确切关系对从业者、研究人员和硬件设计师来说都至关重要,我们还研究了不同训练算法、模型和数据记下这种关系的具体变化,并发现了它们之间的巨大差异。...在论文最后,我们调整了以往文献中关于 batch size 是否会影响模型性能的说法,并探讨了论文结果对更快、更好训练神经网络的意义。...表中也展示了我们用于每个模型和数据集的学习率。学习率的作用是加速神经网络训练,但找到最佳学习率本身是一个优化问题。 ?...其中 a、b、c 三个模型的最大有用 batch size 比其他模型大得多,d 和 f 表明改变神经网络的深度和宽度可以影响模型利用较大 batch size 的能力,但这种做法只适用于同模型对比,不能推广到不同模型架构的对比中

    50930

    tensorflow中实现神经网络训练手写数字数据集mnist

    tensorflow中实现神经网络训练手写数字数据集mnist 一:网络结构 基于tensorflow实现一个简单的三层神经网络,并使用它训练mnist数据集,神经网络三层分别为: 输入层: 像素数据输入...网络结构的代码实现: hidden_nodes = 30 x = tf.placeholder(shape=[None, 784], dtype=tf.float32) y = tf.placeholder...= tf.train.GradientDescentOptimizer(0.05).minimize(loss) init = tf.global_variables_initializer() 二:数据读取与训练..."MNISTdata/", onehot=True) 如果不行,就下载下来,放到本地即可 执行训练的代码如下 # accurate model acc_mat = tf.equal(tf.argmax...说明传统的人工神经网络表现还是不错的,这个还是在没有优化的情况下,通过修改批量数大小,修改学习率,添加隐藏层节点数与dropout正则化,可以更进一步提高识别率。

    99620

    Java中数组和List相互转换的常用方式

    【摘要】 Java中数组和List相互转换的常用方式 一、数组转List 1、方式一:循环遍历 这种方式比较简单,也是最容易想到和最常用的方式,但是过程会繁琐一点,该方式转换后得到List后,可以对List...使用场景: Arrays.asList(strArray)方式仅能用在将数组转换为List后,不需要增删其中的值,仅作为数据源读取使用。...("英语"); System.out.println("删除数据后的List为:" + strList); } 测试结果: 使用场景: 需要在将数组转换为List后,对List进行增删改查操作...,然后通过Collections.addAll()方法,将数组中的元素转为二进制,然后添加到List中,这是最高效的方法。...("物理"); System.out.println("删除数据后的List为:" + strList); } 测试结果: 使用场景: 需要在将数组转换为List后,对List进行增删改查操作

    86510

    如何将 Java 8 中的流转换为数组

    问题 Java 8 中,什么是将流转换为数组的最简单的方式?...String[] stringArray = stringStream.toArray(size -> new String[size]); 其中 IntFunction generator 的目的是将数组长度放到到一个新的数组中去...我们县创建一个带有 Stream.of 方法的 Stream,并将其用 mapToInt 将 Stream 转换为 IntStream,接着再调用 IntStream 的 toArray...紧接着也是一样,只需要使用 IntStream 即可; int[]array2 = IntStream.rangeClosed(1, 10).toArray(); 回答 3 利用如下代码即可轻松将一个流转换为一个数组...然后我们在这个流上就可以进行一系列操作了: Stream myNewStream = stringStream.map(s -> s.toUpperCase()); 最后,我们使用就可以使用如下方法将其转换为数组

    3.9K10

    Python中的数据类型转换

    Python 类型转换 Python 数据类型转换可以分为: 隐式类型转换 - 自动完成 显式类型转换 - 需要使用类型函数来转换 隐式类型转换 在隐式类型转换中,Python 会自动将一种数据类型转换为另一种数据类型...以下实例中,我们对两种不同类型的数据进行运算,较低数据类型(整数)就会转换为较高数据类型(浮点数)以避免数据丢失。...实例中我们对两个不同数据类型的变量 num_int 和 num_flo 进行相加运算,并存储在变量 num_new 中。...同样,新的变量 num_new 是 浮点型(float),这是因为 Python 会将较小的数据类型转换为较大的数据类型,以避免数据丢失。...Python 在这种情况下无法使用隐式转换。但是,Python 为这些类型的情况提供了一种解决方案,称为显式转换。 显示类型转换 在显式类型转换中,用户将对象的数据类型转换为所需的数据类型。

    30210

    神经网络训练中回调函数的实用教程

    磐创AI分享 作者 | Andre Ye 编译 | VK 来源 | Towards Data Science ❝回调函数是神经网络训练的重要组成部分 ❞ 回调操作可以在训练的各个阶段执行,可能是在...回调可以利用许多创造性的方法来改进训练和性能,节省计算资源,并提供有关神经网络内部发生的事情的结论。 本文将详细介绍重要回调的基本原理和代码,以及创建自定义回调的过程。...ReduceLROnPlateau是Keras中默认包含的回调。神经网络的学习率决定了梯度的比例因子,因此过高的学习率会导致优化器超过最优值,而学习率过低则会导致训练时间过长。...我们的自定义回调将采用类的形式。类似于在PyTorch中构建神经网络,我们可以继承keras.callbacks.Callback回调,它是一个基类。...训练一个简单的机器学习模型(例如使用sklearn),通过将其设置为类变量并以(x: action, y: change)的形式获取数据,来学习何时提高或降低学习率。

    1.2K10
    领券