首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    arXiv|GraphDF:一种分子图生成的离散流模型

    今天给大家介绍的是来自德州农工大学的Shuiwang Ji等人发表在预印网站arXiv的文章GraphDF: A Discrete Flow Model for Molecular Graph Generation。在分子图的生成问题中。虽然分子图是离散的,但大多数现有的方法都使用连续的隐变量,从而导致对离散的图结构不正确的建模。在这项工作中,作者提出了一种新的基于流并使用离散隐变量的分子图生成模型。GraphDF使用可逆模移位变换,将离散的隐变量映射到图节点和边。作者表示,使用离散的隐变量降低了计算成本,并消除了反离散化的负面影响。实验结果表明,GraphDF在随机生成、性质优化和约束优化任务上的性能优于以往的方法。

    01

    ICML 2024 | 离散状态空间上的生成流:实现多模态流及其在蛋白质共同设计中的应用

    今天为大家介绍的是来自Tommi Jaakkola团队的一篇论文。结合离散数据和连续数据是生成模型的重要能力。作者提出了离散流模型(DFMs),这是一种新的基于流的离散数据模型,弥补了在多模态连续和离散数据问题中应用基于流的生成模型的缺失环节。作者的关键见解是,可以使用连续时间马尔可夫链实现连续空间流匹配的离散等价形式。DFMs从一个简单的推导出发,包括离散扩散模型作为特定实例,同时在性能上优于现有的基于扩散的方法。作者利用DFMs方法构建了一个多模态的基于流的建模框架。作者将这一能力应用于蛋白质共同设计任务,在其中作者学习一个联合生成蛋白质结构和序列的模型。作者的方法在共同设计性能上达到了最先进的水平,同时允许同一多模态模型用于灵活生成序列或结构。

    01

    作为一种连续现象的EEG微状态

    近年来,脑电微状态分析作为一种描述大规模电生理数据时空动态性特征的工具得到了广泛的应用。脑电微状态被认为存在两种假设:(1)“胜者为王”,即任何给定时间点的地形图都处于一种状态;(2)从一种状态离散地转换到另一种状态。在本研究中,我们从脑电数据的几何角度研究了这些假设,将微状态地形作为原始通道空间子空间的基向量。我们发现,微状态内和微状态间的距离分布在很大程度上是重叠的:对于低全局场强 (GFP)范围,标记为一个微状态的单个时间点通常与多个微状态向量等距,这挑战了“胜者为王”的假设。在高场强下,微状态的可分性有所改善,但仍然较弱。虽然许多GFP峰(用于定义微状态的时间点)出现在高GFP范围内,但与较差可分性相关的低GFP范围也包含GFP峰。此外,几何分析表明,微状态及其跃迁看起来更像是连续的,而不是离散的,传感器空间轨迹变化率的分析显示了渐进的微状态转变。综上所述,我们的发现表明,脑电微状态被认为在空间和时间上是连续的更好,而不是神经集群的离散激活。 1.背景 基于脑电地形图具有准稳定模式的发现,研究人员描述这些稳定的地形图为脑电微状态。脑电微状态分析被认为是研究许多认知过程的神经特征的有效方法,也是研究脑电动态性并将之与认知和疾病联系起来的一种有效的方法。 当前的微状态模型基于两个关键假设,其中之一就是在任何时间点都存在一个单一的状态,即“胜者为王”原则。在脑电数据的几何角度下,M通道脑电数据集可以概念化为M维空间,每个时间点的地形对应于该M维空间中的一个坐标。微状态分析也可以看作是一种降维技术,它将每个微状态概念化为一维子空间,即表征为传感器空间中的向量。目前,将脑电数据紧密分布在(少量)微状态向量周围的假设称为离散性假设。如果微状态分析的离散性假设成立,那么与每个微状态相关的数据点应该紧密地分布在其父向量的周围,并且快速过渡到另一个微状态。 本研究使用标准微状态分析并结合经验和仿真数据的正交投影距离来表明,在传感器空间中,一个微状态内的时间点不一定局限于其父微状态向量周围。相反,单个时间点的地形图可以接近于多个微状态,并且取决于全局场功率,并且随着时间的推移而平滑地改变。因此,本研究表明,时空离散性的假设可能不能准确地捕捉到微状态的本质。此外,我们还证明了主成分分析可以用来可视化3D中的数据分布,因为它保留了不同聚类之间和聚类内的距离。 2.材料与方法 2.1 数据描述 本研究中,我们分析了两个数据集。我们使用了68名对照组和46名抑郁症/高BDI组,数据以500 Hz重新采样。 2.2 实验装置 使用64通道神经扫描系统记录数据,电极布置符合10-10国际系统。 2.3 数据分析 使用MATLAB中的EEGLAB工具箱导入数据进行分析。这些数据最初有66个通道,其中60个通道被保留下来进行分析。在进一步分析之前进行平均参考。然后,对数据进行1-30 Hz的带通滤波。执行ICA后手动清理数据。去除无关的伪影成分。 2.4 微状态分析 微状态分析算法包括以下步骤: (1)我们使用L1范数来计算GFP。这产生了GFP的时间序列,它反映了随着时间推移地形中的总能量(图1A-B)。 (2)GFP(t)的局部最大值被送到改进的k-均值聚类算法(步骤3-7)(图1C)。我们选择了四个聚类进行分析。 (3)聚类过程从随机选择n个模板图开始,其中n是聚类或微状态图的数量。 (4)利用GFP峰值数据计算n个模板图的空间相关性。取空间相关性的绝对值确保结果不依赖于地形图极性。 (5)计算模板图的解释方差。 (6)重新定义模板图,通过从每个聚类中提取所有地形图的第一主成分来实现。 (7)重复步骤4至6,直到解释方差不随迭代次数增加而改善。 (8)选择一组新的n个随机选择的模板图,并重复步骤3到7。最后,选择解释方差最大的一组模板图作为最终的微状态向量。

    01

    再来谈离散性,Java 比 SQL 又有什么优势?

    我们讨论了 SQL 对 Java 的优势,也就是集合化特性,我们现在再来看看 Java 比 SQL 有什么优势。 Java 的代码长是长了,看起来也乱,但仔细研读会发现,它描述的运算逻辑并不困难,基本上就是按部就班地实现业务目标。也就是说,Java 是书写繁琐,而不是思考困难。 但 SQL 却不一样,看懂每一个子查询的技术意义并不难,但你却很难明白它到底想干吗,是怎样为最终的业务目标服务的。也就是说,SQL 写起来要简洁一些,但思维难度却更大了。 这是为什么? 我们之前讲过一期 三行五行的 SQL 只存在于教科书和培训班 ,指出 SQL 有集合化不彻底、缺乏有序支持等问题,这些问题,以及 SQL 还有的其它问题,都有一个共同的根源,这导致虽然 SQL 的繁琐度低于 Java,但难度却更大。

    01

    离散型制造企业如何选择MES系统

    随着MES系统越来越被企业所重视,并并被运用到很多不同行业的制造业中。 MES对于制造企业来说,其所需要的要求是各不相同的,比如离散型制造企业,该如何去选择MES系统呢? 什么是离散型制造企业? 离散型制造企业的产品往往是由多个零件经过一系列并不连续的工序的加工最终装配而成。 离散型MES系统是怎样的? 离散型MES系统,比较适合定制类产品的生产管理,从生产计划开始到成品,全程都是通过MES系统管控起来。采用离散方式制造的产品往往是由多个零件经过一系列并不连续的工序的加工最终装配而成,其生产过程中的原材料—半成品—成品物理特征明确,容易搬运以及标识,如果产品单件价值较高,且有可追溯性以及流程控制的需求。 如何更好地运用离散型MES系统? (1)规范标准:通过与上层设计系统的集成,及时更新生产数据,指导生产现场作业。管理车间各种资源,实现车间资源的规范化管理,同时提供生产排程的重要依据。 (2)生产追溯:建立完整的生产数据档案,形成全面的正反向追溯体系,可随时随地追溯产品基本信息,物料信息,生产信息,质量信息,界定责任,减少召回损失。 (3)加强生产现场的管控:根据生产计划的指导和现场设备的操控,实现对生产现场的有力监控。 (4)无纸化生产排程:从销售合同开始中间涉及到年计划、月计划、周计划、日计划,直至生产派工单进行管理,实现生产排程无纸化,真正做到生产排程可管理,可查询,可追溯。 (5)打破信息孤岛:MES系统帮助离散型企业填补了上层计划系统和底层控制系统的信息断层,实现了企业三级信息流的通畅。 (6)实现车间智能化管理:离散型制造企业MES系统能够覆盖95%的车间管理业务,实现车间内部的信息流、财务流、控制流的协同,进一步改善生产车间的管理手段,同时也提高了生产效率。 MES系统是离散型制造业提高企业核心竞争力的重要手段之一。离散型制造企业通过MES系统能够对企业车间的生产管理、物流管理、质量管理、资源管理等方面进行全程管控,提高生产效率,降低生产成本,还帮助离散型制造企业规范管理车间现场的管理模式,完成车间的信息化建设。

    02
    领券