TEG数据平台部联合AiLab、Ai平台部,结合语音合成、语音识别、机器人问答、大数据能力等前沿性、高复用性的功能模块构建腾讯小知智能语音机器人产品,支持问答、业务办理、营销推广、回访调研、通知提醒等应用场景,降低人工服务成本、提升服务质量和转化效率,目前已在多个领域落地,如公安、零售、教育和地产等。
强化学习是机器学习的一个分支,涉及智能体(agent)如何在一个环境中采取行动,从而最大化某种长期的累积奖励。
TEG数据平台部联合AiLab、Ai平台部,结合语音合成、语音识别、机器人问答、大数据能力等前沿性、高复用性的功能模块构建腾讯小知智能机器人产品,支持问答、业务办理、营销推广、回访调研、通知提醒等应用场景,降低人工服务成本、提升服务质量和转化效率,目前已在多个领域落地,如公安、零售、教育和地产等。
强化学习特别是深度强化学习近年来取得了令人瞩目的成就,除了应用于模拟器和游戏领域,在工业领域也正取得长足的进步。百度是较早布局强化学习的公司之一。这篇文章系统地介绍强化学习算法基础知识,强化学习在百度的应用,以及百度近期发布的基于PaddlePaddle深度学习框架的强化学习工具PARL。
前面写了对话系统中的SLU之领域分类和意图识别、槽填充、上下文LU和结构化LU、对话状态追踪(DST)、以及NLG,今天更新任务型对话系统中的DPL。DPL也叫DPO(对话策略优化),跟DST一样,DPL也是对话管理(DM)的一部分,而DM是任务型对话中至关重要的一部分。说个非严格的对比:如果把对话系统比作计算机的话,SLU相当于输入,NLG相当于输出设备,而DM相当于CPU(运算器+控制器)。
强化学习(reinforcement learning),又称再励学习,评价学习,是一种重要的机器学习方法,在智能控制机器人及分析预测等领域有许多应用。本文将介绍强化学习的相关概念、算法及其应用实例。
编者按:邓力博士原为加拿大滑铁卢大学教授,1999 年加入微软,2016 年起担任微软首席人工智能科学家,负责微软深度学习技术中心应用趋向的深度学习研究。 在上周的 AI Frontiers 会议上,邓力博士为参会嘉宾做了口语对话系统的专题演讲。AI 科技评论与会记者将现场演讲记录下来,结合 PPT 为大家整理出这份演讲实录。此次邓老师介绍了口语对话系统的分类,三代演变史,以及三大研究前沿领域,可谓干货满满。NLP 领域的童鞋们不可错过。 邓力: 今天,我想讲一讲口语对话系统(Spoken Dialog
选自arXiv 作者:Zachary Lipton等 机器之心编译 参与:Panda 强化学习是近年来最受关注的人工智能研究方向之一,相关的研究成果也层出不穷,有的甚至引起了全世界的广泛讨论。近日,卡内基梅隆大学、微软研究院、谷歌和 Citadel 等机构在 arXiv 上联合发表了一篇研究论文,提出了一种将深度强化学习应用于对话系统的新技术:BBQ 网络。本论文已被 AAAI 2018 大会接收。论文第一作者为 Zachary Lipton,另外 Citadel 首席人工智能官邓力也是该论文的作者之一,以
如题,虽然 NLP 研究领域已经在深度学习的帮助下取得了长足的发展,许多技术也已经商业化落地,但我们也需要知道,这个领域还有几个开放性问题等待解决 —— 如果它们也能比较好地解决,也许我们能迎来 NLP 科研成果与商业落地的一个新的高潮。
AI科技评论按:本月 18 日,由美中技术与创新协会(Association of Technology and Innovation,ATI)主办的第一届“AI NEXT”大会在西雅图召开。本次会议的主要嘉宾包括:微软首席 AI 科学家邓力,微软院士黄学东,Uber 深度学习负责人 Luming Wang 等。华人之外,还有亚马逊 Alexa 首席科学家 Nikko Strom,微软小娜架构师 Savas Parastatidis 等业内知名专家。 大会主题是“探索 AI 的潜力,把 AI 技术应用于实用
语音助手、智能客服、智能音箱、聊天机器人,近年各种自然语言对话系统如雨后春笋般地涌现,有让人眼花缭乱的感觉。一方面对话系统越来越实用化,另一方面当前技术的局限性也凸显无遗。计算机多大程度上可以自如地和人进行对话?自然语言对话的挑战在什么地方?未来可能会有哪些突破,以及需要重点研究与开发哪些技术?
今天 MIT Technology Review 将强化学习(Reinforcement Learning)列入 2017 年十大突破技术,并阐明其已经能够在 1 到 2 年内发挥出可触及的作用。 话说强化学习领域也是一个历史相当久远的领域,这里我们引用之前 Neil 写过的一篇文章《深度强化学习导引》: 强化学习,现在常常将其看作机器学习领域的一个分支,但如果细细去看,你会发现,强化学习本身也有完整的一条发展的脉络。从动物行为研究和优化控制两个领域独立发展最终经 Bellman 之手汇集抽象为 MDP 问
AI 科技评论按:当 AlphaGO 横扫之后,越来越多的学者意识到强化学习在人工智能领域所扮演的重要角色。同时随着深度学习的发展,应用深度学习,很多自然语言的传统难题得到突破。另外,引用 David Silver 的一句话:深度学习 (DL)+ 强化学习 (RL) = 人工智能 (AI)。
AI 科技评论按:强化学习最常见的应用是学习如何做出一系列决策,比如,如何一步步攀登上三千英尺高的岩壁。有机会用到强化学习并做出高水准结果的领域包括机器人(以及无人机)控制、对话系统(个人助理、自动化呼叫中心)、游戏产业(智能 NPC、游戏 AI)、药物研发(分子构型测试、剪裁管理)、复杂系统控制(资源分配、过程优化)等等。
任务型对话模型包括两种方法:Pipeline和End2End,前面介绍了问题定义和建模(任务型对话系统公式建模&&实例说明)、Pipeline方法中的SLU(总结|对话系统中的口语理解技术(SLU)(一)、总结|对话系统中的口语理解技术(SLU)(二)、总结|对话系统中的口语理解技术(SLU)(三))、DST(一文看懂任务型对话系统中的状态追踪(DST))、DPL(一文看懂任务型对话中的对话策略学习(DPL))、NLG(总结|对话系统中的自然语言生成技术(NLG))。今天简单介绍下部分End2End的方法(End2End的方法也有多种,比如:有的方法虽然是End2End的方法,但是还是单独设计模型的部件,不同部件解决Pipeline方法中的某个或多个模块;有的方法则是完全忽略Pipeline方法划分的多个模块,完全的End2End),后续抽时间会继续介绍。
雷锋网 AI 研习社按:当 AlphaGO 横扫之后,越来越多的学者意识到强化学习在人工智能领域所扮演的重要角色。同时随着深度学习的发展,应用深度学习,很多自然语言的传统难题得到突破。另外,引用 David Silver 的一句话:深度学习 (DL)+ 强化学习 (RL) = 人工智能 (AI)。
对于对话系统来说,一般都可以分为特征处理、理解意图和生成答案等过程。思必驰北京研发院 NLP 负责人葛付江解释,在接收问句后,系统会进行进行分词、词性标注以及命名实体识别等过程以完成问句的特征处理过程。
本地服务(黄页)微聊代运营模式是指人工客服代替58平台上的商家与C端用户IM沟通聊天以获取商机(如用户联系方式、细粒度需求信息等),再将商机转交给商家,促进商家成单。我们基于58AI Lab自研的灵犀智能语音语义平台构建了智能客服商家版,将其应用在微聊代运营场景下,通过人机协作模式提高商机获取效率,打造了黄页商家智能聊天助手。这里的人机协作模式先后经历了三个阶段:在早期机器人效果较一般时,机器人和人工客服分时工作,即人工客服不上班时才由机器人接待用户咨询。在经过优化机器人效果较优时,先机器人再人工,即当用户来咨询商家时,白天先由机器人接待,若机器人能够聊出商机则结束会话,若不能再转接人工客服,晚上使用纯机器人接待。在机器人效果和人工很接近甚至超过人工时,使用纯机器人接待,人工客服去从事其他更复杂的工作。2021年年初,黄页商家智能聊天助手被商业化,以“微聊管家”命名随会员套餐一起打包售卖给商家,全年共计服务了数万个商家,为公司创造收入超过五千万元。当前,机器人的商机转化率(聊出商机的会话数/总会话数)已达到了人工客服的98%水平,我们实现了纯机器人接待,节省了数十名客服人力。
开发一个智能对话系统1,不仅模仿人类对话,而且回答有关电影明星的最新新闻到爱因斯坦相对论等主题的问题,并完成旅行计划等复杂任务,是目前运行时间最长的目标之一。 AI。直到最近,目标一直难以捉摸。然而,现在,我们正在学术研究界和行业中观察到有希望的结果,因为大量的会话数据可用于培训,并且深度学习(DL)和强化学习(RL)的突破应用于会话AI。
作者:蒙 康 编辑:王抒伟 笔者在最近的研究中发现了一篇非常好的有关对话系统的论文,《A Survey on Dialogue Systems:Recent Advances and New Frontiers》,论文来自于京东数据团队,论文引用了近124篇论文,是一篇综合全面的介绍对话系统的文章,可谓是诚意满满,今天我们将其重点进行解读,以飨读者。 前言 1 拥有一个虚拟助理或一个拥有足够智能的聊天伙伴系统似乎是虚幻的,而且可能只在科幻电影中存在很长一段时间。近年来,人机对话因其潜在的潜力和诱人的商业
本文介绍了如何基于强化学习对话系统框架,实现一个可学习的对话管理模块,该模块可以自动生成对话过程中的行为序列。具体来说,利用了Deep Q-Network(DQN)作为对话管理模块的核心,通过经验回放和双DQN策略,该模块可以学习到对话过程中的最优行为序列,并自动生成回答。实验结果表明,该模块可以大大提高对话系统的自动回答率和任务完成率,同时降低了人工标注的工作量。
阿里的一本《强化学习实战--技术演进和业务创新》的可以有空阅览,18年10月出版的。在早几年大厂们都已经沉淀技术了,下面总结一些大佬们的建议。
最近调研了不少迁移学习的工作,本文选取7种常见的迁移学习分享给大家。因为我感觉迁移学习在NLP领域的很多任务中有很大的利用价值,毕竟高质量的标注数据是很少的,而人工标注费时费力,而且质量不一定好。
机器之心原创 作者:彭君韬(Tony) 在网络视频对话里,一个有些腼腆的男生正面对着摄像头做一场网络工作面试的培训,摄像头的另一端则是一个模拟系统。这个系统观察着男生的举止、面部表情和声音变化,并对他
AI科技评论按:本文为Yann Lecun在CoRL 2017大会上做的演讲的概述,AI科技评论作为受邀媒体参加了CoRL大会,所有资料来自于官方公开资源整理。 Lecun为Facebook AI研究院院长,他同时也是纽约大学的终身教授。他因著名的卷积神经网络(CNN)相关的工作而被人称为CNN之父。在演讲中,Lecun回顾了其早期利用神经网络用于机器人的研究做了一个基本的介绍,在当时Lecun的论文被RSS拒稿,然而今天CNN却在人工智能领域大放异彩,技术的发展往往是螺旋式且兼具跳跃性,实在难以预料。 接
推荐阅读时间:8min~12min 主要内容:容易忽略的强化学习知识之基础知识及MDP 由于我对RL的期望挺大,很看好它的前景,故之后应该会写下一个系列的强化学习文章,标题是易忽略的强化学习知识之XX,也就是说,我写下的是我觉得有必要知道比较重要并容易忽略的知识。也许不会所有强化学习的知识都全面的写,但希望可以对大家有所帮助,同时巩固我自己的知识! 强化学习是什么?和监督学习,无监督学习是什么关系? 强化学习的主要应用是什么?在其他如NLP的应用呢? 模仿学习是什么?和强化学习联系? 强化学习的整体运行流程
本文的讲座来自于英伟达GTC大会 首先附上原视频链接https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1666649323930001EDPn
作者 | 洪亮劼 责编 | 何永灿 涉及自然语言处理、人工智能、机器学习等诸多理论以及技术的顶级会议——ACL 2017于今年7月31日-8月4日在加拿大温哥华举行。从近期谷歌学术(Google Scholar)公布的学术杂志和会议排名来看,ACL依然是最重要的自然语言处理相关的人工智能会议。因为这个会议的涵盖面非常广泛,且理论文章较多,一般的读者很难从浩如烟海的文献中即刻抓取到有用信息,这里笔者从众多文章中精选出5篇有代表性的文章,为读者提供思路。 Multimodal Wo
本文首先介绍了强化学习的概念和相关知识,以及与监督学习的区别,然后就强化学习在自然语言处理应用中的挑战和优势进行了讨论。
下面,我们介绍论文的主要思想和创新之处。 系统概览 早期的对话系统主要基于由专家人工制定的状态和规则。而现代对话系统通常使用组合学习的架构,将手工定制状态和规则组合到统计机器学习算法中。由于人类语言的复杂性,在构建在开放域对话机器人时,最大的挑战在于无法枚举所有可能的状态。 MILABOT完全采用基于统计机器学习的方法,在处理和生成自然人类对话中做了尽可能少的假设。模型中每个组件的设计使用机器学习方法优化,通过强化学习对各个组件的输出进行优化。其灵感来自于组合机器学习系统,即由多个独立的统计模型组成更好的学
随着大数据和人工智能技术的快速发展,深度学习已经成为了机器学习领域最具前景的一个分支。Python作为一种功能强大、易于学习和使用的编程语言,已经成为了深度学习领域最流行的语言之一。Python拥有众多的深度学习库和框架,如TensorFlow、PyTorch和Keras等,这些库和框架提供了快速构建和训练深度神经网络的工具和算法。
AI 科技评论按:继 2017 年的温哥华之旅后,ACL 2018 在澳大利亚墨尔本举办,举办地点为墨尔本会展中心,也是 IJCAI2017 举办地。
在 AlphaGo战胜李世石之后,AlphaZero以其完全凭借自我学习超越人类在各种棋类游戏中数千年经验的能力再次刷新了人类对人工智能的认识,也使得强化学习与深度学习的结合受到了学术界和产业界的前所未有的关注。
强化学习算法的思路非常简单,以游戏为例,如果在游戏中采取某种策略可以取得较高的得分,那么就进一步「强化」这种策略,以期继续取得较好的结果。这种策略与日常生活中的各种「绩效奖励」非常类似。我们平时也常常用这样的策略来提高自己的游戏水平。
本文探讨了ChatGPT的强化学习应用与其对AI学习与交互的未来影响。引言部分介绍了人工智能、自然语言处理和GPT系列模型的概念,引出了ChatGPT作为最新版本的背景。接着,文章概述了自然语言处理、强化学习和GPT系列模型的重要性。随后,重点解释了强化学习在自然语言处理中的作用以及与ChatGPT的融合,探讨了这种融合带来的创新和潜在优势。文章详细阐述了强化学习在ChatGPT中的应用场景,并提供了实际案例和示例,展示了其效果。进一步,展望了ChatGPT强化学习应用对AI学习与交互的未来影响,并探讨了强化学习在更广泛人工智能领域的应用前景和人机交互的发展趋势。文章还涵盖了AI学习与交互的伦理考量,讨论了可能面临的创新与挑战,并提出了解决方案以促进可持续发展。最后,总结了ChatGPT强化学习的优势与局限性,并展望了其在AI学习与交互中的重要地位和未来发展的前景。
对话系统受到越来越多人的关注, 深度学习的兴起也带动了一系列研究的发展, 深度学习能够利用大量的数据和少量的人工处理来学习有意义的特征表达以及回答的生成策略, 该文章将现有的对话系统划分成了面向任务的模型和非面向任务的模型, 给出了现有各个研究观点以及可能的研究方向, 介绍了深度学习如何在典型的算法中发挥作用
2018年是颇具意义的一年,以“Make AI Everywhere”为愿景,我们在医疗、农业和公益等AI应用领域取得不错进展,也正在通过游戏和机器人等实验平台探索解决AI终极难题——通用人工智能——的道路。 展望2019年,我们将继续通过前沿研究提升AI的认知、决策和创造力,深耕行业,拥抱消费互联网与产业互联网,做好“数字化助手”标配,提供更好的技术、工具与服务,为人们的日常生活和社会发展带来更多美好便利。 以下是我们对腾讯AI Lab在2018年重点工作的回顾,也预祝大家新春安康吉祥。 行业
【导语】7 月 31 日晚,自然语言处理领域最大顶会 ACL 2019 公布了今年的八个论文奖项,其中最佳长论文的获奖者被来自中国科学院大学、中国科学院计算技术研究所、腾讯 WeChat AI、华为诺亚方舟实验室、伍斯特理工学院等机构的联合论文所斩获。除了这篇最佳长论文,腾讯在今年的 ACL 会议上还有哪些研究论文被录取?今天,我们就用这篇文章为大家做介绍。
[ 导读 ] 7 月 31 日晚,自然语言处理领域最大顶会 ACL 2019 公布了今年的八个论文奖项,其中最佳长论文的获奖者被来自中国科学院大学、中国科学院计算技术研究所、腾讯 WeChat AI、华为诺亚方舟实验室、伍斯特理工学院等机构的联合论文所斩获。除了这篇最佳长论文,腾讯在今年的 ACL 会议上还有哪些研究论文被录取?今天,我们就用这篇文章为大家做介绍。
人工智能(Artificial Intelligence,简称AI)是一个广泛而复杂的领域,涉及许多相关的概念和技术。理解这些概念及其相互关系,可以帮助我们更好地掌握人工智能的整体结构和发展趋势。以下是一些主要概念的总结:
本文大部分来自ConvLab: Multi-Domain End-to-End Dialog System Platform,2019年4月18号才挂到arxiv,我是19号简单扫一遍。这种类型的文章比较简单,大多是阐述性质的,今天也没细看(局部细看了,没有整体细看),捡着关键内容加上我之前关于对话方面的了解简单写下。如果有问题,欢迎交流。
选自arXiv 作者:Iulian V. Serban等 机器之心编译 参与:路雪、李泽南 The Alexa Prize 是亚马逊在对话人工智能领域中发起的一项竞赛,本届比赛的奖金为 250 万美元,将于 11 月决出优胜者。本文介绍的是蒙特利尔大学 Yoshua Bengio 团队(MILA Team)参与本次比赛的 Chatbot 设计。 对话系统和聊天智能体(包括聊天机器人、个人助理和声控界面)在现代社会中越来越普遍。比如,移动设备内置的个人助理、电话中的自动技术支持、卖东西的在线机器人(从时尚服饰
精英人才培养计划是一项校企联合人才培养项目,入选学生将受到业界顶尖技术团队与高校导师的联合指导及培养。培养期间,学生将获得3个月以上到访腾讯开展科研访问的机会,基于真实产业问题及海量数据,验证学术理论、加速成果应用转化、开阔研究视野。同时项目组将为学生搭建线上和线下学习、交流平台,帮助学生挖掘更多潜能。学生通过“十分精英圈”线上平台,随时获取前沿技术资讯、沉淀科研收获与心得;通过“智学研讨会”及“智享交流会”等线下平台,积极参与海内外顶级学术会议及学术专家交流活动;通过“精英研学营”进阶平台,对话产业
【导读】自然语言对话系统正在覆盖越来越多的生活和服务场景,同时,自然语言对话的理解能力和对精细知识的对话召回率在技术上仍有很大挑战。
【导读】作者整理了近期最新发布及更新的 12 个非常有学习和收藏意义的开源项目。这些项目中包括基于 TensorFlow 的强化学习框架;可以对数据进行结构化处理的 AutoML 库;支持 TensorFlow,PyTorch,MXNet,CNTK 和 Caffe2 等多种深度学习框架的模型部署框架;可以帮助用户分析训练模型的工具;强大的人脸标记开源项目等等,可以说每一个项目都值得我们了解一下!接下来,我们就一起找到你喜欢的那一个,码起来!
最近,人工智能领域的后起之秀Facebook着实火了一把。根据2017 年6 月17 日美国《大西洋月刊》的报道,Facebook人工智能实验室设计的两个聊天机器人在谈判的训练中,发展出了一种全新的、只有它们自己能够理解的语言。这一爆炸性的消息一时间引得各路媒体蜂拥而至,煞有介事地讨论着人工智能如何颠覆人类对语言的理解,进而联想到人工智能会不会进化为热映新片《异形:契约》中戴维的角色,人类的命运仿佛又被推上了风口浪尖。
本课程主要面向人群:(1)对强化学习感兴趣的人士,(2)对强化学习有一定了解的人士。主要内容:全景式介绍强化学习模型的算法。
领取专属 10元无门槛券
手把手带您无忧上云