首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【架构设计】高并发IM系统架构优化实践

作者简介: 少强,网名无衣蒹葭,阿里云资深工程师,主要做分布式存储和搜索相关的工作。 摘要: 介绍如何设计一个稳定、高并发、消息保序的IM系统,以及如何通过使用存储层的高级功能来优化系统架构。 在构建社交IM和朋友圈应用时,一个基本的需求是将用户发送的消息和朋友圈更新及时准确的更新给该用户的好友。为了做到这一点,通常需要为用户发送的每一条消息或者朋友圈更新设置一个序号或者ID,并且保证递增,通过这一机制来确保所有的消息能够按照完整并且以正确的顺序被接收端处理。当消息总量或者消息发送的并发数很大的时候,我们通

06
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    [物联网]2.4 存储数据--数据库

    数据库的作用 数据库的作用是保存并灵活运用数据(图 2.25)。除此之外,其作用还包括从保存的数据中找出与所指定条件相符的数据。另外,数据库还能把多条数据连在一起,把它们作为一个数据取出。 打个比方,已知与特定传感器相关的 ID,测量时间,以及温度传感器的值。光凭这些数据,是无法理解数据指的是哪个房间的温度的。因此就需要传感器的 ID 以及跟房间名字有关的数据。把这两条数据加在一起,才能知道某房间的温度。 图 2.25 展示的是一个叫作 RDB(关系数据库)的数据库。最近,除了 RDB 以外还出现了一种叫作 NoSQL 的数据库。 RDB 用一种叫作 SQL 的专门用来操作数据库的语言来保存和提取数据。另一方面, NoSQL 则是用 SQL 以外的各种方法来操作数据库。 本书还会介绍键值存储( Key-Value Store,简称 KVS)和文档型数据库等种类的数据库。

    02

    基于OpenCV修复表格缺失的轮廓--如何识别和修复表格识别中的虚线

    通过扫描或照片对文档进行数字化处理时,错误的设置或不良的条件可能会影响图像质量。在识别的情况下,这可能导致表结构损坏。某些图标的处理结果可能只是有轻微的瑕疵,甚至只是一些小孔,但是无法将其识别为连贯的系统。有时在创建在单元格时,表的某些侧面可能也没有线的存在。表和单元格类型多种多样,因此通常所提出的代码可能并不适合所有情况。尽管如此,如果我们能对提取的表格进行少量修改,大部分程序仍然可以使用。大多数表格识别算法是基于表格的结构。由于没有完整的边线会使一些单元格无法被识别,导致不良的识别率,因此我们需要想办法修复这些丢失的线段。

    02

    基于OpenCV修复表格缺失的轮廓--如何识别和修复表格识别中的虚线

    通过扫描或照片对文档进行数字化处理时,错误的设置或不良的条件可能会影响图像质量。在识别的情况下,这可能导致表结构损坏。某些图标的处理结果可能只是有轻微的瑕疵,甚至只是一些小孔,但是无法将其识别为连贯的系统。有时在创建在单元格时,表的某些侧面可能也没有线的存在。表和单元格类型多种多样,因此通常所提出的代码可能并不适合所有情况。尽管如此,如果我们能对提取的表格进行少量修改,大部分程序仍然可以使用。大多数表格识别算法是基于表格的结构。由于没有完整的边线会使一些单元格无法被识别,导致不良的识别率,因此我们需要想办法修复这些丢失的线段。

    01
    领券