连接大量CSV文件时,可以采用多种方法来提高效率。以下是一些基础概念和相关策略:
原因:
解决方法:
concurrent.futures
或multiprocessing
库。read_csv
函数中的chunksize
参数来分块读取文件。以下是一个使用Python和Pandas进行并行处理的示例:
import pandas as pd
from concurrent.futures import ProcessPoolExecutor
def process_chunk(chunk):
# 这里可以添加数据处理逻辑
return chunk.sum() # 示例:计算每块的和
def merge_csv_files(file_paths, output_path, chunk_size=10000):
all_results = []
with ProcessPoolExecutor() as executor:
futures = []
for file_path in file_paths:
reader = pd.read_csv(file_path, chunksize=chunk_size)
for chunk in reader:
futures.append(executor.submit(process_chunk, chunk))
for future in futures:
all_results.append(future.result())
final_result = pd.concat(all_results)
final_result.to_csv(output_path, index=False)
# 使用示例
file_paths = ['file1.csv', 'file2.csv', ..., 'file65000.csv'] # 替换为实际文件路径
merge_csv_files(file_paths, 'merged_output.csv')
通过上述方法,可以有效地连接大量CSV文件,同时保证程序的高效运行。
领取专属 10元无门槛券
手把手带您无忧上云