首页
学习
活动
专区
圈层
工具
发布

非线性方程(组)迭代解法

非线性迭代方法的理论基础是泰勒(Taylor)级数展开。...对于一关于x的非线性方程f(x)=0,其关于x0点的泰勒(Taylor)级数展开式为: 当从二阶开始截断,只保留前两项可得: 由于截断,只能得到一个近似解。...可构造如下迭代步: 上面的非线性迭代法称为Newton-Raphson 迭代。一个非线性方程需要进行代式求解,当非线性迭代收敛时,所获得的解即为非线性系统的真实响应。...一般来说,非线性迭代可写成如下统一格式: 对上述迭代方法作进一步拓展,可以用于二元非线性方程组求解。...例如: 将上述两个二元非线性方程组在(x0,y0)进行一次截断的泰勒级数展开可得: 进一步可构造如下的迭代: 这就是弧长法的理论基础。

1.7K70

C语言实现牛顿迭代法解方程

C语言实现牛顿迭代法解方程 利用迭代算法解决问题,需要做好以下三个方面的工作: 一、确定迭代变量 在可以用迭代算法解决的问题中,我们可以确定至少存在一个可直接或间接地不断由旧值递推出新值的变量,...二、建立迭代关系式 所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。...三、对迭代过程进行控制 在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地执行下去。...例子:用牛顿迭代法求下列方程在值等于2.0附近的根:2x3-4x2+3x-6=0。...14 }while(fabs(x-x0)>=1e-5); 15 printf ("%f\n",x); 16 return 0 ; 17 } 执行结果: 当x=1.5时,方程

3.8K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    matlab牛顿迭代法解非线性方程求解

    牛顿迭代法,又名切线法,这里不详细介绍,简单说明每一次牛顿迭代的运算:首先将各个方程式在一个根的估计值处线性化(泰勒展开式忽略高阶余项),然后求解线性化后的方程组,最后再更新根的估计值。...下面以求解最简单的非线性二元方程组为例(平面二维定位最基本原理)1、新建函数fun.m,定义方程组function f=fun(x);%定义非线性方程组如下%变量x1 x2%函数f1 f2syms x1...df=dfun(x);f=fun(x);df=[diff(f,'x1');diff(f,'x2')]; %雅克比矩阵3、建立newton.m,执行牛顿迭代过程 clear;clc format; x0...=[0 0]; % 迭代初始值 eps = 0.00001; % 定位精度要求 for i = 1:10 f = double(subs(fun(x0),{'x1' 'x2'},{x0(1...end disp('定位坐标:'); x disp('迭代次数:'); i

    35510

    Jacobi迭代法解线性方程组

    当线性方程组的规模比较大时,采用高斯消元法需要太多时间。这时就要采用迭代法求解方程组了。高斯消元法是一个O(n^3)的浮点运算的有限序列,在经过有限步计算之后理论上得到的是精确解(无舍入误差时)。...而迭代法在经过有限步迭代之后一般不产生精确解,迭代法在计算过程中逐渐减小误差,当误差小于容许值时停止迭代计算。方程组的系数矩阵是严格对角占优矩阵时,迭代总是收敛的。...●Jacobi迭代法 对于方程组3u+v=5,u+2v=5,将其改写为如下的形式 ? 由于方程组的系数矩阵是严格对角占优矩阵时,迭代一定收敛。...对于方程组u+2v=5,3u+v=5,由于方程组的系数矩阵不是严格对角占优矩阵时,因此迭代不收敛。来看迭代过程: ?...对于上面的方程组3u+v=5,u+2v=5,写成矩阵形式 ? 迭代格式为 ? 这与之前的迭代格式是一致的。 Fortran源代码 ?

    3.1K20

    深入浅出强化学习:从贝尔曼最优方程到策略迭代与值迭代的对比

    这一递归关系使得我们可以通过迭代的方式求解价值函数。 贝尔曼最优方程的核心地位 在所有可能的策略中,强化学习的目标是找到最优策略 π∗\pi^* ,使得所有状态的价值都最大化。...贝尔曼最优方程的重要性体现在三个方面:首先,它提供了判断策略最优性的标准;其次,它启发了包括值迭代和策略迭代在内的一系列经典算法;最后,它构成了现代深度强化学习算法(如DQN、PPO等)的理论基础。...这一方程不仅揭示了最优价值函数与最优策略之间的内在联系,更为后续的值迭代、策略迭代等算法提供了理论支撑。让我们从马尔可夫决策过程(MDP)的基本设定开始,逐步展开这一重要方程的推导过程。...方程求解方法 解析解法 理论上,贝尔曼最优方程可以看作是一个非线性方程组。...策略迭代算法 另一种求解方法是策略迭代(Policy Iteration),它交替进行策略评估和策略改进: 初始化任意策略 π0\pi_0 策略评估:解线性方程组 Vπk(s)=∑aπk(a∣s)[R(

    36210

    牛顿迭代解方程 ax^3+bX^2+cx+d=0

    times x2 + x1 \times x3 + x2 \times x3 = \frac{c}{a} $$ $$ x1 \times x2 \times x3 = (-\frac{d}{a}) $$ 牛顿迭代解方程...牛顿迭代法(Newton’s method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在 17世纪提出的一种在实数域和复数域上近似求解方程的方法。...牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根 附近具有平方收敛,而且该法还可以用来求方程的重根、复根。另外该方法广泛用于计算机编程中。...重复以上过程,得r的近似值序列, 其中x(n+1)=x(n)-f(x(n)) /f’(x(n)), 称为r的n+1次近似值,上式称为牛顿迭代公式。...这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f’(x(n))。

    1.6K10

    写一个用迭代法解方程的Java程序

    1.定义解释 迭代法也称辗转法,是一种逐次逼近方法,在使用迭代法解方程组时,其系数矩阵在计算过程中始终不变。...(1)对于给定的方程组X =Bx+f,用式子 逐步代入求近似解的方法称为迭代法(或称为一阶定常迭代法,这里与B和k无关) (2) 如果limx(k), x→∞存在(记作x* ),称此迭代法收敛,...显然x就是方程组的解,否则称此迭代法发散。...2.解法介绍 牛顿迭代法是一种线性化方法,其基本思想是将非线性方程f(x)= 0逐步归结-为某种线性方程来求解.设已知方程f(x)=0有近似根X (假定f’(xk)≠ 0),将函数f(x)在点xk展开...所以x=2.0001 4.代码编写 例:使用牛顿迭代法求方程的解,X3-2x-5=0,在区间[2,3]上的根。

    1.7K20

    Java|写一个用迭代法解方程的Java程序

    问题描述 迭代法也称辗转法,是一种逐次逼近方法,在使用迭代法解方程组时,其系数矩阵在计算过程中始终不变。...迭代法具有循环的计算方法,方法简单,适宜解大型稀疏矩阵方程组,在用计算机计算时只需存储A的非零元素(或可按一定公式形成系数,这样A就不需要存储)。...(1)对于给定的方程组X =Bx+f,用式子逐步代入求近似解的方法称为迭代法(或称为一阶定常迭代法,这里与B和k无关) (2) 如果limx(k), x→∞存在(记作x* ),称此迭代法收敛,显然x就是方程组的解...解决方案 解法介绍 牛顿迭代法是一种线性化方法,其基本思想是将非线性方程f(x)= 0逐步归结-为某种线性方程来求解.设已知方程f(x)=0有近似根X (假定f’(xk)≠ 0),将函数f(x)在点xk...所以x=2.0001 例:使用牛顿迭代法求方程的解,X3-2x-5=0,在区间[2,3]上的根。

    1.3K30

    【组合数学】递推方程 ( 递推方程示例 1 | 列出递推方程 )

    文章目录 一、递推方程示例 1 二、递推方程示例小结 一、递推方程示例 1 ---- 编码系统使用 8 进制数字 , 对信息编码 , 8 进制数字只能取值 0,1,2,3,4,5,6,7 ,...这样就含有奇数个 ( 1 个 ) 7 , 是无效编码 ; 只能是 0,1,2,3,4,5,6 这 7 种 , 因此有 1 位编码时 , 有效编码个数是 7 个 , 产生 递推方程初值...最终得到的递推方程 : 递推方程 : a_n = 6a_{n-1} + 8^{n-1} 初值 : a_1 = 7 解上述递推方程的通项公式 : a_n = \cfrac{6^n + 8^n}{2}...二、递推方程示例小结 ---- 该问题是一个具体的计数问题 , 上述问题并不是简单的计数 , 该计数带参数 n , 这种类型的计数 , 可以看成一个 数列计数结果 , 如果可以找到该数列 , 后项

    1.1K00

    参数方程中参数的意义: 参数方程定义: 什么是参数方程: 参数方程与普通方程的公式

    参数方程中参数的意义: 参数方程中t的几何意义要看具体的曲线方程了,一般都是长度,角度等几何量,也有一些是不容易找到对应的几何量的。...参数方程定义: 一般的,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数{x=f(t),y=g(t)并且对于t的每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,那么上述方程则为这条曲线的参数方程...,联系x,y的变数t叫做变参数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。...什么是参数方程: 其实就是 : y=f(t);x=g(t);其中t是参数,分别能表示出x,y;你看看下面参数方程与一般函数的转化你就明白了; 参数方程与普通方程的公式: 参数方程与普通方程的互化最基本的有以下四个公式...: 1.cos²θ+sin²θ=1 2.ρ=x²+y² 3.ρcosθ=x 4.ρsinθ=y 举例: 参数方程: 一般的参数方程,主要使2式子进行乘除运算消掉 t。

    1.2K10

    非线性方程组求解迭代算法&图像寻初始值讲解

    前段时间过冷水在学习中遇到了一个解非线性方程组的问题,遇到非线性方程组的的问题过冷水果断一如既往、毫不犹豫的 fsolve()、feval()函数走起,直到有人问我溯本求源的问题——非线性方程组求解算法...于是方程f(x)=0可以近似表示为: ? 这是个线性方程,记其根为xk+1,则xk+1的计算公式为: ? 这就是解一元非线性方程的牛顿迭代法公式,我们的问题是非线性方程组,需要把一元扩展到二元。...记非线性方程组为:F(B12,B21)=0,函数F(B12,B21)的导数F、(B12,B21)称为雅克比矩阵,表示为: ? 非线性方程组的牛顿迭代法就是直接将单方程的牛顿迭代法的套用; ?...0],'Visible','on'); set(axes1,'FontName','Times New Roman','FontSize',14,'FontWeight','bold'); %%牛顿迭代法求方程组的根...2,1))),eval(char(dF(2,2)))] F=subs(a); dF=subs(b); x=x-inv(double(dF))*double(F); end 在牛顿迭代法过程中中要赋予迭代初始值

    1.5K10

    正规方程

    一、什么是正规方程梯度下降法计算参数最优解,过程是对代价函数的每个参数求偏导,通过迭代算法一步步更新,直到收敛到全局最小值,从而得到最优参数。正规方程是一次性求得最优解。...二、正规方程的使用举例如下:?这里4个样本,以及4个特征变量x1,x2,x3,x4,观测结果是y,在列代价函数的时候,需要加上一个末尾参数x0,如下:?...三、不可逆情况注意到正规方程有一个 求逆矩阵的过程,当矩阵不可逆,一般有两种原因:多余特征(线性相关)太多特征(例如:m≤n),解决办法:删除一些特征,或正则化其实,本质原因还是线性知识:首先,这是两个必要条件...= 0时可逆四、正规方程与梯度下降法的比较梯度下降法:缺点:需要选择学习率α需要多次迭代优点:当特征参数大的时候,梯度下降也能很好工作正规方程:缺点:需要计算 ,计算量大约是矩阵维度的三次方,复杂度高...特征参数大的时候,计算缓慢优点:不需要学习率α不需要多次迭代总结:取决于特征向量的个数,数量小于10000时,选择正规方程;大于10000,考虑梯度下降或其他算法。

    3.1K30

    【组合数学】递推方程 ( 递推方程内容概要 | 递推方程定义 | 递推方程示例说明 | 斐波那契数列 )

    文章目录 一、递推方程 内容概要 二、递推方程 定义 三、递推方程 示例 四、斐波那契数列 ( Fibnacci ) 一、递推方程 内容概要 ---- 递推方程 内容概要 : 递推方程定义 递推方程实例...常系数线性递推方程 常系数线性递推方程定义 公式解法 递推方程在计数问题中的应用 二、递推方程 定义 ---- 序列 a_0 , a_1 , \cdots , a_n , \cdots , 记做...a_i 可以是 1 个 , 也可以是多个 ; 将 a_n 用前面若干项 a_{n-1} , a_{n-2} , \cdots 表示出来 , 称为 关于序列 \{a_n\} 的 递推方程...; 递推方程组成 : 下面 3 个是一套 ; 数列 递推方程 初值 给定递推方程 , 和 初值 , 就可以 唯一确定一个序列 ; 递推方程表达的关系 : 递推方程 只表达了 项与之前的项 的关系..., 如果 初值不同 , 得到的数列是不同的 ; 递推方程与数列关系 : 递推方程代表的不是一个数列 , 是 若干个数列 的 共同的依赖关系 ; 递推方程 , 就是将计数结果 , 表达成一个数列

    96000

    解线性方程组的迭代法

    解线性方程组的迭代法 0. 问题描述 1. Jacobi迭代 1. Jacobi迭代方法 2. Jacobi迭代矩阵 3. Jacobi迭代收敛条件 4. python伪代码实现 2....具体而言,有如下定理: 定理 6.1 若方程组 的系数矩阵A,满足下列条件之一,则其Jacobi迭代收敛: (1) A为行对角优阵,即 , ; (2) A为列对角优阵,即 image.png...Gauss-Seidel迭代方法 Gauss-Seidel迭代方程和上述Jacobi迭代事实上是非常相似的,唯一的区别在于说Jacobi迭代是以 为整体每次一起进行迭代更新的,而Guass-Seidel...Gauss-Seidel迭代收敛条件 同样的,我们给出书中关于Gauss-Seidel迭代的收敛条件如下: 定理6.2 若方程组系数矩阵为行或列对角优时,则Gauss-Seidel迭代收敛。...定理6.3 若方程组系数矩阵 为对称正定阵,则Gauss-Seidel迭代收敛。 4.

    1.1K30
    领券