例如,如果你在新数据库中已经存在与旧数据库相同的自增 ID,那么插入操作可能会失败。 删除和插入操作:如果表中存在大量删除和插入操作,自增主键可能会导致 ID 值的不连续。...可预测性:自增主键的值是可预测的,因为它们总是按照递增的顺序生成。这可能会带来安全风险,例如,攻击者可能会尝试预测未来的 ID 值来插入恶意数据。...如何保证各个节点生成的自增 ID 是唯一的,这将需要额外的机制来协调各个节点。...UUID共占128位,分为五段,它具有唯一性、全局性、不变性等特点。...它的设计目标是在分布式系统中生成ID,保证ID的唯一性、有序性和趋势递增。雪花算法的核心思想是将一个64位的ID分成多个部分,分别表示不同的信息。
这是我参与「掘金日新计划 · 12 月更文挑战」的第17天,点击查看活动详情 序 HELLO,这里是百里,一个学习中的ABAPER,今天讲的内容是选择屏幕中经常会使用的技术,MODIF ID 的使用....在sap 开发中,选择屏幕不能像前端那种可以实现手风琴展示那种层级联动,不是很方便.只能通过操作 MODIF ID 的方式进行处理,二级联动效果. 什么是MODIF ID ....MODIF ID 通俗的解释就是将提前定义好的选择屏幕分包,而modif id 就是定义包的名称.我们通过选择屏幕明细调用对应的包明细,从而使屏幕只显示出我们设定包的查询条件....语法解析 这是一个非常简单的东西,甚至没有什么复杂的语法.当然如果灵活的使用,不仅可以使我们的选择屏幕变的好看,减少数据的冗余,同时也增加代码的可读性,做到同样功能的放在一起 ....中写入选择屏幕需要进行的其他事宜.
不在于你学的是什么技术,学得多深,IQ多少,而在于你身上有别人没有的独特的个性、背景、知识和经验的组合。如果这种组合,1,绝无仅有;2,在实践中有价值,3,具有可持续发展性,那你就具备核心竞争力。...因此,当设计自己的发展路线时,应当最大限度地加强和发挥自己独特的组合,而不是寻求单项的超越。而构建自己独特组合的方式,主要是通过实践,其次是要有意识地构造。关于这个观点,话题太大,我不打算赘述。...3.虽然技术路线的选择不是核心竞争力,也不应该具有决定性, 但对于个人职业路线还是具有比较重要的影响力。...当然,客观上来说,这几年技术变化是比较快,弯弯绕得比较多,相比之下,如果当时你选择的是Java,可能这几年过的比较幸福一些,这是事实。...但切记,技术路线的选择重要,但不具有决定意义。
css中id选择器的注意点 注意: 1、每个HTML标签都有一个属性叫做id, 也就是说每个标签都可以设置id 2、在同一个界面中id的名称是不可以重复的 3、在编写id选择器时一定要在id名称前面加上...# id的名称是有一定的规范的 id的名称只能由字母/数字/下划线,a-z 0-9 _ id名称不能以数字开头 id名称不能是HTML标签的名称,不能是a h1 img input ......在企业开发中一般情况下如果仅仅是为了设置样式, 我们不会使用id ,因为id是留给js使用的 作用:根据指定的id名称找到对应的标签, 然后设置属性 格式: #id名称{ 属性:值; } 以上就是...css中id选择器的注意点,希望对大家有所帮助。
是通过它的形状,还是通过它的重量? 当我们在分布式环境中存储一些数据的时候,不得不面对的一个选择,就是ID生成器。 使用一个唯一的字符串,来标识一条完整的记录。...无奈的选择UUID 虽然UUID在大多数语言中都有相关的类库,但除非迫不得以,我们一般不会使用它。UUID虽然不会重复,但它非常的长,长的让人望而生畏。...具有更好的紧凑性,是目前大多数业务优先采用的ID生成算法。...最大的Number,叫做Number.MAX_SAFE_INTEGER,它的值为: 2^53-1 或者 +/- 9,007,199,254,740,991 众所周知,Java中的Long,是64位的。...如果你的ID对顺序性没有什么严格的要求,比如使用了kv等非常松散的数据库,那么NanoID是你的不二选择。 End 介绍了这么多,你会用哪种ID生成器呢?
背景 在分布式系统中,经常需要用到全局唯一ID发生器,标识需要存储的数据。我们需要什么样的ID生成器?...ID生成器除了是数据的唯一标识以外,一般需要在系统中承担更多的责任,概括起来有以下几点: 唯一性:“全局唯一” vs “业务唯一”? 分布式系统使用唯一的ID生成器,会有非常严重的申请互斥问题。...因为消息本身归属于某一用户,因此用户唯一已经隐含了“全局唯一ID ( = 用户ID + 消息ID )”。 时间相关:“秒级” vs “毫秒”? 时间是天然唯一的,因此也是很多设计的选择。...另外一个选择就是,在这个秒的级别上不再保证顺序,而整个 ID 则只保证时间上的有序。后一秒的 ID肯定比前一秒的大,但同一秒内可能后取的ID比前面的号小。...auto-increment-offset = 1 TicketServer2: auto-increment-increment = 2 auto-increment-offset = 2 微信 微信使用MySQL持久化未分配的最大
最大信息系数 maximal information coefficient (MIC),又称最大互信息系数。...之前写了一个MIC的介绍,里面包含了MIC的原理,链接:https://www.omegaxyz.com/2018/01/18/mic/ 利用到的MATLAB包安装请参见:https://www.omegaxyz.com.../2018/02/21/minepy/ 特征选择步骤 ①计算不同维度(特征)之间的MIC值,MIC值越大,说明这两个维度越接近。...②寻找那些与其他维度MIC值较小的维度,根据阈值选出这些特征。...③利用SVM训练 ④训练结果在测试集上判断错误率 minepy的安装请参照:https://www.omegaxyz.com/2018/02/21/minepy/ MATLAB代码: clc load
作者:Panagiotis Meletis,Rob Romijnders,Gijs Dubbelman 摘要:训练用于具有强(每像素)和弱(每边界框)监督的语义分割的卷积网络需要大量弱标记数据。...我们提出了两种在弱监督下选择最相关数据的方法。 第一种方法设计用于在不需要标签的情况下找到视觉上相似的图像,并且基于使用高斯混合模型(GMM)建模图像表示。...作为GMM建模的副产品,我们提供了有关表征数据生成分布的有用见解。 第二种方法旨在寻找具有高对象多样性的图像,并且仅需要边界框标签。...这两种方法都是在自动驾驶的背景下开发的,并且在Cityscapes和Open Images数据集上进行实验。...我们通过将开放图像使用的弱标签图像数量减少100倍,使城市景观最多减少20倍来证明性能提升。
一、最大高度 试想一下,若有n个节点的度为m的树,当只有最后一层有m个节点,其余层均只有一个节点,在所有含有nn个节点的度为m的树中一定是最高的。...二、最低高度 当每个非终端节点均含有m个孩子节点时间,此时整棵树在所有含有n个节点的度为m的树中是最矮胖的,此时这棵树的高度也是含有n个节点度为m的树中高度最低。...在极限的状态下可以称之为满m叉树,因此可以推导不等式,得出最低高度。 结论:综上分析,对于一个含有n个节点的度为m的树的高度范围为:
在默认情况下,WordPress 的导航菜单会输出很多如menu-item、menu-item-type-taxonomy、menu-item-object-category等加上 id 组成的CSS...选择器,无疑,对于一些人来说,这些选择器导致整个html 格式变得难看,看着碍眼的东西最好是将它去掉,之前Jeff 也曾有过一篇类似的文章《删除 WordPress 导航菜单的多余 CSS 选择器》,今天则介绍个通过添加过滤器来删除...WordPress 导航菜单的多余 CSS 选择器(id或class)的新方法。...要删除 WordPress 导航菜单的多余 CSS 选择器(id或class),则需要在主题的functions.php 文件下加入以下代码: add_filter('nav_menu_css_class...array() : ''; } 上面是所有的CSS 选择器(id或class)都会被删除,如果为了某些CSS 效果(如鼠标焦点高亮)需要保留一些 CSS 选择器的,可以将第 4 行以下代码改为: function
场景: sql2005数据库,假如名为db1,启用了Service Broker,把db1备份,然后再恢复成db2(即相当于db2就是db1的一次完整镜像备份),然后用 use master ALTER...DATABASE db2 set ENABLE_BROKER 想启用Broker时,出现以下错误: 无法启用数据库 "db2" 中的 Service Broker,因为已存在启用的具有相同 ID 的
我们去餐厅吃饭时,服务员都会拿菜单给我们选择点什么菜。今天就分享一个具有选择功能的简易对话框,给用户展示一个选择列表。...实现思路如下: 既然有选择列表,那么这个列表的内容肯定保存在某个地方 用户选择某一项后,给用户做出提示,刚才选择的是什么 该功能主要用的是 AlertDialog,源码如下: 1、主Activity(...AlertDialog.Builder(AlertDialogDemo.this) // 再次弹框,向用户提示 用户刚才选择的内容...="@+id/textView7"/> 选择" android:layout_marginTop="...分享这个极为简单的功能,主要是为后面学习AlertDialog的中高级用法以及实现具备复杂选择功能的需求打下坚实的基础。
根据云安全联盟的年度调查显示,虽然企业及其员工正在越来越多的使用云计算服务,但企业高管仍然担心业务数据存储在云计算中所涉及的安全隐患。...此外,只有21%的企业有团队或委员会负责创建云安全政策;另外31%的企业计划建立一个这样的团队。 该报告显示,企业担心起员工正在快速转向云服务。...云安全联盟的报告发现,对云安全服务安全隐患的担心是阻碍云服务部署的主要原因。大约73%的受访者认为安全问题是阻碍云计算项目的首要挑战。...其他主要因素包括IT失去对服务的控制,对合规性的担忧,以及IT和业务经理缺乏对云计算的知识。 此外,大约四分之三的企业认为保护云服务很重要或者非常重要。...尽管如此,对云安全的担忧并没有阻止企业及其员工全身心地使用云服务来更好地做好自己的工作。80%的企业每个月至少会收到一次对新云服务的请求。
这是PCA的核心思想之一。 方差大意味着数据在这个方向上分布得更开,信息量更大。 在统计学中,方差可以用来度量数据的“信息”或“变化量”。如果一个方向上的方差大,说明这个方向能更好地区分数据点。...所以我们选择方差最大的方向作为第一个主成分,因为它保留了最多的原始信息。 ✅ 总结一句话:选择方差最大的方向,是为了最大限度保留数据的结构和差异。
下拉列表绑定一个双击事件dblclick() $("#id”).dblclick(function(){ //获取列表中所有被选中的option var alloptions...= $("option:selected");//这种写法存在问题,如果已分配列表中也有被选中的option同样会被选中//不可以 var alloptions = $("#id option...:selected",document);==>$("option:selected");//不可以 var alloptions = $("option:selected",$("#id..."));//选择哪个下拉(select)列表的被选中的值(第二种写法) var alloptions = $("option:selected",#id);//这个是另外一种写法也是可以被识别的...(alloptions.length); //appendTo()把所有匹配的元素追加到另一个指定的元素元素集合中。
数组中的第K个最大元素 215. 数组中的第K个最大元素  给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。 ...请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。  你必须设计并实现时间复杂度为 O(n) 的算法解决此问题。...pq.pop(); pq.push(nums[i]); } } return pq.top(); } 解题思路二:快速选择算法... 上面的解法很优秀的,但是时间复杂度还是达不到题目要求的 O(n),所以我们要换一种算法,也就是快速选择算法,它的时间复杂度可以达到 O(n) 级别,这是算法导论经过数学分析推导的,这里就不推导了,...快速选择算法,其实和前面的快速排序是类似的,也是通过分治的思想,只不过对分治后的处理稍作改动罢了! 
CAM) 对比全局平均池化Global average pooling (GAP) vs 全局最大池化global max pooling (GMP): 类响应图示例: 图中高亮区域就是根据label...的注意图高响应区域 具体得到的这个相应区的方法是 1) 训练主干网络得到特征图 2) 进行全局池化(图中用的GAP,也可以使用GMP) 3) 对全局池化的结果做全连接得到全连接参数 w 4)...把全连接参数作为权重对特征图进行加权求和 上图最下方的公式 根据对图像的研究发现,不同的类别的特征图相应区域不一样,原始的卷积网络具有一定的定位能力。...即使是错误预测的类别,比如上图预测狗狗预测成了人,但是人也在图中特征区域也是定位在了人的身上。 说了这么多就是论证GAP和GMP具有定位能力。...GMP 是对全局求最大,只去找分数最高的那个区域。而去忽略其他分数低的区域 因此在定位方面,GAP 比GMP要好 GAP outperforms GMP for localization.
root121toor@gmail.com ~关注我 带你看更多精品技术和面试必备 输入: [-2,1,-3,4,-1,2,1,-5,4] 输出: 6 解释: 连续子数组 [4,-1,2,1] 的和最大
在刷 LeetCode 的过程中,“第K大”是一个非常高频的考点,而题目 215. 数组中的第K个最大元素 就是经典代表。...这道题不仅考察我们对排序的理解,还挑战我们写出时间复杂度为 O(n) 的算法。 本文将带你深入理解并实现一个基于快速选择(Quickselect)的高性能解法。...题目描述 给定一个整数数组 nums 和一个整数 k,请返回数组中第 k 个最大的元素。 ⚠️ 注意:题目中要求是第 k 大,而不是第 k 个不同的元素。...快速选择是快速排序的“变种”,它利用了分治的思想,在每次划分时只处理可能包含答案的那一半,从而平均时间复杂度降为 O(n)。...总结 快速选择是解决“第K大”、“第K小”类问题的利器 随机选择 pivot 是算法性能稳定的关键 递归思想+分治策略,让问题逐步缩小,最终得到答案