首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Nature 、cell 双开花-抗氧化剂与氧化应激 | MedChemExpress

    癌细胞经常通过癌症转移调控自身的新陈代谢,进而来有效地支持细胞增殖和存活。因此,因恶性肿瘤转移造成的死亡占癌症整体发病的 95%。2019 年 6 月 27 日,国际 TOP 杂志 Nature 在线发表了中科院上海生化与细胞研究所杨巍维课题组与中科院大连化学物理研究所李国辉课题组合作的题为 “UDP-glucose accelerates SNAI1 mRNA decay and impairs lung cancermetastasis ”的研究成果。研究首次揭示了糖醛酸代谢通路中的尿苷二磷酸葡萄糖(UDP-Glc)抑制肺癌转移的新功能及作用机制,建立了代谢小分子调控蛋白质功能的新模式,为肺癌转移的监测和阻断提供了新的靶点和生物标志物(该文章中使用了 — p38α 抑制剂- Doramapimod)。

    01

    多尺度生成扩散模型预测蛋白-配体复合物结构的动态骨架

    今天给大家介绍的是来自加州理工大学Zhuoran Qiao和NVIDIA团队发表在arxiv上的预印本《DYNAMIC-BACKBONE PROTEIN-LIGAND STRUCTURE PREDICTION WITH MULTISCALE GENERATIVE DIFFUSION MODELS》。作者提出了一种名为NeuralPLexer的扩散模型框架,这一框架能够利用蛋白的骨架模板以及分子图的输入,快速预测蛋白-配体复合物的结构以及它们的波动。另外,本文发现当NeuralPLexer应用于蛋白质折叠因为配体存在而显著改变的系统时,这一框架可以完善类结合态蛋白的结构。这一结果表明,数据驱动的方法可以捕获蛋白质和小分子实体之间的结构协作性,为新药物靶点的计算识别和功能小分子和配体结合蛋白的端到端可微设计展示了方向和前景。

    02

    GaussianEditor:快速可控的3D高斯编辑

    开发用户友好的 3D 表征和编辑算法是计算机视觉领域的一个关键目标。NeRF等隐式三维表征具有高保真的渲染能力,但其限制了对场景部分的直接修改,使得编辑任务更为复杂,阻碍了实际应用。基于这些挑战,本文额定研究重点是开发一种先进的三维编辑算法,该算法旨在灵活快速地编辑3D场景,集成隐式编辑(如基于文本的编辑)和显式控制(如特定区域修改的边界框使用)。为了实现这些目标,作者选择高斯表征(GS)进行实时渲染和显式点云表示。本文提出的 GaussianEditor 提供快速、可控和通用的 3D 编辑功能。单个编辑会话通常只需要 5-10 分钟,比以往的编辑过程快得多。本文的贡献可以概括为四个方面:

    01

    Brain|白质束和执行功能:对因果性和相关性证据的回顾

    执行功能是涉及工作记忆/更新、设置转移和抑制等能力的高级认知过程。这些复杂的认知功能是由广泛分布的认知网络之间的相互作用实现的,由白质束支持。执行功能障碍在影响白质的神经系统疾病中很常见;然而,特定的神经束是否对正常的执行功能至关重要尚不清楚。我们回顾了在胶质瘤清醒手术中使用直接电刺激、基于体素、基于束和束的病变症状映射和弥散张量成像,以探索健康和受损成人白质束完整性和执行功能之间的关系的因果和相关证据。胼胝体始终与所有的执行过程相关,特别是它的前节段。因果关系和相关性证据都显示,上纵束显著支持执行功能,特别是工作记忆。更具体地说,强有力的证据表明,上纵束的第二分支对所有的执行功能都至关重要,特别是对灵活性。整体结果显示,语言任务的左侧偏侧化,而具有视觉需求的执行任务的右侧偏侧化。额束可能支持执行功能,然而,需要更多的证据来阐明它参与执行任务是否超出了语言的控制。越来越多的证据表明,连接皮质和皮层下灰质区域的右侧束网络支持评估反应抑制任务的执行,一些表明右丘脑前辐射的作用。最后,相关证据表明扣带束在执行功能中发挥了作用,特别是在评估抑制的任务中。我们根据目前关于这些神经束的功能作用的知识、对支持执行功能的大脑网络的描述以及对脑肿瘤患者的临床意义来讨论这些发现。

    01

    MCE 化合物库 | MedChemExpress

    *{margin:0;padding:0}html{-ms-text-size-adjust:100%;-webkit-text-size-adjust:100%;line-height:1.6}img{z-index:999;position:relative;max-width:100%;margin:10px 0;}body{-webkit-touch-callout:none;font-family:-apple-system-font,BlinkMacSystemFont,"Helvetica Neue","PingFang SC","Hiragino Sans GB","Microsoft YaHei UI","Microsoft YaHei",Arial,sans-serif;color:#333;letter-spacing:.034em}h1,h2,h3,h4,h5,h6{font-weight:400;font-size:16px;line-height:36px;}a{color:#576b95;text-decoration:none;-webkit-tap-highlight-color:rgba(0,0,0,0)}td,th{word-wrap:break-word;padding:5px 10px;border:1px solid #DDD;}table{margin-bottom:10px;border-collapse:collapse;display:table;width:100%!important;}.appmsg_skin_default .rich_media_area_primary{background-color:#fff}.appmsg_skin_default .rich_media_area_primary .weui-loadmore_line .weui-loadmore__tips{background-color:#fff}.rich_media_area_primary{padding:20px 16px 12px;background-color:#fafafa}@media (max-width:375px){.rich_media_area_primary{padding:20px 60px 15px 60px}.rich_media_area_extra{padding:0 60px 21px 60px}}@media (min-width:1024px){.rich_media_area_primary_inner,.rich_media_area_extra_inner,body{max-width:677px;margin-left:auto;margin-right:auto}.rich_media_area_primary{padding-top:32px}}.rich_media{padding:20px;}.appmsg_skin_default .rich_media_area_primary{background-color:#fff}.appmsg_skin_default .rich_media_area_primary .weui-loadmore_line .weui-loadmore__tips{background-color:#fff}@media screen and (min-width:1024px){.rich_media_area_primary_inner,.rich_media_area_extra_inner{max-width:677px;margin-left:auto;margin-right:auto}.rich_media_area_primary{padding-top:32px}}.rich_media_content{overflow:hidden;color:#333;font-size:17px;line-height:37px;;word-wrap:break-word;-webkit-hyphens:auto;-ms-hyphens:auto;hyphens:auto;text-align:justify;position:relative;z-index:0}.rich_media_content *{max-width:100%!important;box-sizing:border-box!important;-webkit-box-sizing:border-box!important;word-wrap:break-word!important}.rich_media_content p{clear:both;min-height:1em}.rich_media_c

    01

    enhance_contrast滤波器

    算法:enhance_contrast滤波器是对比度增强滤波,首先计算局部区域最大值和最小值,然后查看当前点像素值最接近最大值还是最小值,最后替换为最大值或最小值。原始图像中每个像素与模糊图像中对应像素之间的亮度差异表示像素针对其相邻者的对比程度。该像素的亮度随后会与局部坐标对比度成比例变化。模糊之后更暗的像素必须比其相邻者更亮,因此其亮度会进一步提高,而如果像素在模糊之后更暗,则它甚至将变暗更多,在细节最显著的图像区域中选择性地增大对比度。钝化遮蔽的参数是像素半径(越过该半径的颜色会模糊)、该效果对亮度的改变程度以及对比度“阈值”(低于该阈值不会进行任何亮度变化)。

    02

    【计算机视觉——RCNN目标检测系列】一、选择性搜索详解

    在刚刚过去的一个学期里,基本水逆了一整个学期,这学期基本没干什么活,就跟RCNN杠上了。首先是看论文,然后是网上找tensorflow写好的源码。但是,可惜的是网上给出的源码基本上是RCNN的主要作者Ross Girshick大神的代码,不同数据集换了下。因此为了理解源码,RCNN的处理过程,费劲去装了个ubuntu和win10的双系统并在Ubuntu上安装caffe,这就花费了近2周的时间。快速研究完RCNN的caffe源码之后,才转过来手写Fast RCNN的tensorflow版本的代码,这也花费了大量的时间,从踩坑到填坑再到踩坑。RCNN不是很好实现,SVM至今还没怎么看懂。接下来将会陆续更新RCNN->Fast RCNN->Faster RCNN系列的文章。在这篇文章中,主要讲解RCNN与Fast RCNN中获取图片中物体真实目标检测框的算法——选择性搜索算法。

    01

    Nature neuroscience:结构束的改变预示着淀粉样蛋白阳性老年人的下游tau蛋白累积

    阿尔兹海默症的动物模型表明,在淀粉样蛋白病理学的促进下,tau蛋白病理学的传播可能沿着相关的途径发生。为了在人类中研究这些想法,研究者将淀粉样蛋白扫描与纵向数据相结合,包括白质连接、海马体积、tau正电子发射断层扫描以及256名认知健康的老年人的记忆表现。海马体积基线越低,连接海马扣带束(HCB)的平均扩散率越高。HCB扩散率预测了淀粉样蛋白阳性个体后扣带皮层的下游连接区tau蛋白的积累,而非淀粉样蛋白阴性个体。此外,HCB扩散率预测了具有高后扣带皮层tau结合的淀粉样蛋白阳性个体的记忆衰退。研究者的结果提供了更高的淀粉样蛋白病理学的体内证据,强调了后扣带皮层下游HCB扩散率和tau积累之间的联系,并促进记忆衰退。这证实了淀粉样蛋白在增强神经衰弱和记忆衰退方面的关键作用,标志着临床前期的阿尔茨海默病的开始。

    03

    人类感知决策的神经生理学

    反映知觉决策形成的动态神经信号的发现具有重大意义。这些信号不仅能让我们详细研究决策过程的神经执行过程,而且还能揭示大脑决策算法的关键要素。在很长一段时间里,这些信号只能通过侵入性记录来获取,而非侵入性记录技术的局限性阻碍了人类神经科学的进展。然而,最近研究方法的进展,使越来越多的研究人类大脑的信号可以动态的跟踪决策过程。在本文中,我们强调了人类的神经生理数据是如何被用来研究形成决策的多个处理水平的新见解,并为能够解释个体内部和个体间差异的数学模型的构建和评估提供信息,并研究辅助流程如何与核心决策过程相互作用。本文发表在Annual Review of Neuroscience杂志。

    01

    脑网络通信: 概念、模型和应用

    摘要:理解神经系统中的交流和信息处理是神经科学的中心目标。在过去的二十年中,连接组学和网络神经科学的进步为研究复杂大脑网络中的多突触通信开辟了新的途径。最近的研究对连接体信号仅通过最短路径发生的主流假设提出了质疑,这导致了大量替代网络通信模型的出现。本文综述了脑网络通信模型的最新进展。我们首先从图论的数学和神经信号传导的生物学方面(如传输延迟和代谢成本)之间的概念联系开始。我们将关键的网络通信模型和措施组织到一个分类法中,旨在帮助研究人员在文献中导航越来越多的概念和方法。该分类学强调了连接体信号传导不同概念的优点、缺点和解释。我们通过回顾在基础、认知和临床神经科学中的突出应用,展示了网络通信模型作为一种灵活、可解释和易于处理的框架来研究脑功能的效用。最后,对未来网络通信模型的发展、应用和验证提出了建议。

    05
    领券