我相信大家经常会使用Excel对数据进行排序。有时候我们会按照两个条件来对数据排序。假设我们手上有下面这套数据,9个人,第二列(score)为他们的考试成绩,第三列(code)为对应的评级。...#读入文件,data.txt中存放的数据为以上表格中展示的数据 file=read.table(file="data.txt",header=T,sep="\t") #先按照code升序,再按照Score
140","tony 152")str_split(y," ")y2 = str_split(y," ",simplify = T)str(y)y2 = as.data.frame(y2) #转换为数据框...test 数据框按照某一列排序library...从大到小# distinct,数据框按照某一列去重复distinct(test,Species,.keep_all = T)?...dplyr# mutate,数据框新增一列mutate(test, new = Sepal.Length * Sepal.Width)连续的步骤1.多次赋值,产生多个中间的变量x1 = select(iris...apply()族函数1.apply 处理矩阵或数据框#apply(X, MARGIN, FUN, …) #其中X是数据框/矩阵名;#MARGIN为1表示行,为2表示列,FUN是函数test<- iris
seaborn提供了一个快速展示数据库中列元素分布和相互关系的函数,即pairplot函数,该函数会自动选取数据框中值为数字的列元素,通过方阵的形式展现其分布和关系,其中对角线用于展示各个列元素的分布情况...函数自动选了数据框中的3列元素进行可视化,对角线上,以直方图的形式展示每列元素的分布,而关于对角线堆成的上,下半角则用于可视化两列之间的关系,默认的可视化形式是散点图,该函数常用的参数有以下几个 ###...# 1. corner 上下三角矩阵区域的元素实际上是重复的,通过corner参数,可以控制只显示图形的一半,避免重复,用法如下 >>> sns.pairplot(df, corner=True) >>...#### 3、 x_vars和y_vars 默认情况下,程序会对数据框中所有的数值列进行可视化,通过x_vars和y_vars可以用列名称来指定我们需要可视化的列,用法如下 >>> sns.pairplot...通过pairpplot函数,可以同时展示数据框中的多个数值型列元素的关系,在快速探究一组数据的分布时,非常的好用。
矩阵和数据框每行每列处理 列表向量中每个元素处理apply()族函数1.apply 处理矩阵或数据框#apply(X, MARGIN, FUN, …) #其中X是数据框/矩阵名;#MARGIN为1表示行...,为2表示列,FUN是函数test列求平均## Sepal.Length Sepal.Width Petal.Length...2.0208578## ## [[4]]## [1] 0.59086709 0.48062406 0.05737153 1.20811435sapply() # 简化为向量或矩阵,不能简化返回和lapply一样的结果数据框连接...# 示例数据test1 <- data.frame(name = c('jimmy','nicker','Damon','Sophie'), blood_type
subset:用来指定特定的列,根据指定的列对数据框去重。默认值为None,即DataFrame中一行元素全部相同时才去除。...注:后文所有的数据操作都是在原始数据集name上进行。 三、按照某一列去重 1 按照某一列去重(参数为默认值) 按照name1对数据框去重。...结果和按照某一列去重(参数为默认值)是一样的。 如果想保留原始数据框直接用默认值即可,如果想直接在原始数据框删重可设置参数inplace=True。...原始数据中只有第二行和最后一行存在重复,默认保留第一条,故删除最后一条得到新数据框。 想要根据更多列数去重,可以在subset中添加列。...如需处理这种类型的数据去重问题,参见本公众号中的文章【Python】基于多列组合删除数据框中的重复值。 -end-
利用for循环嵌套画出一个蜂形图案。
在准备关系数据时需要根据两列组合删除数据框中的重复值,两列中元素的顺序可能是相反的。 我们知道Python按照某些列去重,可用drop_duplicates函数轻松处理。...但是对于两列中元素顺序相反的数据框去重,drop_duplicates函数无能为力。 Python中有多种方法可以处理这类问题。...本文介绍一句语句解决多列组合删除数据框中重复值的问题。 一、举一个小例子 在Python中有一个包含3列的数据框,希望根据列name1和name2组合(在两行中顺序不一样)消除重复项。...打印原始数据行数: print(df.shape) 得到结果: (130, 3) 由于每两行中有一行是重复的,希望数据处理后得到一个65行3列的去重数据框。...三、把代码推广到多列 解决多列组合删除数据框中重复值的问题,只要把代码中取两列的代码变成多列即可。
str_replace_all(x2,"o","A")#替换所有### 6.字符删除xstr_remove(x," ")#只删除第一个空格str_remove_all(x," ")#删除所有空格二.玩转数据框...# arrange,数据框按照某一列排序library(dplyr)arrange(test, Sepal.Length) #从小到大arrange(test, desc(Sepal.Length))...#从大到小# distinct,数据框按照某一列去重复distinct(test,Species,.keep_all = T)#将数据框test中的Species列去重复# mutate,数据框新增一列...mutate(test, new = Sepal.Length * Sepal.Width)#新增列new,值为两列的乘积 三.管道符号:%>%:表示传递x=iris %>% filter(Sepal.Width...1.for循环:以下两种循环输出结果一样x 循环i=5 接着i=6 s=s+i print(c(i,s))}x <- c(5,6,0,3
前面我出过一个考题,是对GEO数据集的样本临床信息,根据列进行筛选,比如: rm(list=ls()) options(stringsAsFactors = F) library(GEOquery)...eset=getGEO('GSE102349',getGPL = F) pd=pData(eset[[1]]) 就会下载一个表达矩阵,有113个病人(行),记录了57个临床信息(列),很明显,有一些临床信息列是后续的数据分析里面...那么就需要去除,一个简单的按照列进行循环判断即可!...就是仍然是需要去除无效行,就是去掉临床信息为N/A、Unknown、Not evaluated的行,需要检查全部的列哦~ 给一个参考答案 pd=pd[apply( apply(pd,2,function
转念思考了一下,其实目的也就是将数据框中的指定列转换为因子。换句话说,就是如何可以批量的对数据框的指定行或者列进行某种操作。...R 数据整理(六:根据分类新增列的种种方法 1.0) 其实按照我的思路,还是惯用的循环了,对数据框的列名判断一下,如果所取的列在数据框中,就修改一下其格式,重新赋值: data(cancer, package...across test2 %>% summarise(across(-any_of("id"), mean)) across 必须要在mutate 或summarise 这类函数内部,对数据框的列进行类似...这里就回到开始的问题了,如果是希望对数据框本身进行处理,而非统计学运算呢?...批量处理 组合一般的运算 逻辑判断方便获得指定列(通过& ) 无缝结合tidyverse 中的其他函数 image.png
一、前言 前几天在Python最强王者群【wen】问了一个pandas数据处理的问题,一起来看看吧。...这篇文章主要盘点了一个Pandas数据处理问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。
问题描述: 创建一个包含10行6列随机数的DataFrame,行标签从大写字母A开始,列标签从小写字母u开始。...然后从上向下遍历,如果某行u列的值比上一行u列的值大,就把该行x列的值改为上一行x列的值加1,否则保持原来的值不变。 参考代码: 运行结果:
图片 二、数据框 *注意改动要赋值 test <- iris[c(1:2,51:52,101:102),] rownames(test) =NULL # 去掉行名,NULL是“什么都没有” test #...setosa ## 2 setosa ## 3 versicolor ## 4 versicolor ## 5 virginica ## 6 virginica 1.排序:arrange,数据框按照某一列排序...library(dplyr) arrange(test, Sepal.Length) #默认从小到大 arrange(test, desc(Sepal.Length)) #从大到小 2.去重:distinct 将数据框按照某一列去重复...6.0 2.5 ## Species ## 1 setosa ## 2 versicolor ## 3 virginica 3.新增:mutate,数据框新增一列...循环语句 (1)for循环 x = c(1,5,7,3) y = 1 #将x里的每一个元素print print(y) ## [1] 1 for (i in x){ print(i) } ## [1
本文介绍基于Python语言,读取Excel表格数据,并基于给定的行数范围内的指定列数据,绘制多条曲线图,并动态调整图片长度的方法。 首先,我们来明确一下本文的需求。...其中,第一列是一个表示时间、循环增长的列,其数值从2023001开始,到2023365结束,然后会继续再从2023001开始,以此类推;并且每一个循环中,有些日期可能会缺失,即并不是每天都有数据的。 ...我们现在希望,对于给定的行数起始值与结束值(已知这个起始值与结束值对应的第一列数据,肯定是一个完整的时间循环),基于表格中后面带有数据的几列(也就是上图中紫色区域内的数据),绘制曲线图;并且由于这几列数据所表示的含义不同...可以看到,横坐标就是表示时间的数据,纵坐标就是那几列含有数据的列;此外,还需要注意,前面也提到了,时间数据是不断循环的,而每一个循环中时间的数量是不确定的。...设置图例、x轴刻度旋转等属性,并保存图片;最后,通过plt.show()显示绘制的图片。
最近学徒群在讨论一个需求,就是用数据框的每一列的平均数替换每一列的NA值。但是问题的提出者自己的代码是错的,如下: ? 他认为替换不干净,应该是循环有问题。...答案一:双重for循环 我同样是没有细看这个代码,但是写出双重for循环肯定是没有理解R语言的便利性。 #我好像试着写出来了,上面的这个将每一列的NA替换成每一列的平均值。...tmp[out[[i]][y],i] <- mean(tmp[[i]],na.rm = T) } } 答案的提出者自己还点评了一句:我是这么想的,也不知道对不对,希望各位老师能指正一下:因为tmp数据框中...,NA个数不唯一,我还想获取他们的横坐标的话,输出的结果就为一个list而不是一个数据框了。...(x,na.rm = T) return(x) }) 大家可以对比一下,看看自己的R语言水平停留在哪一个答案的水平 学徒作业 把 melt 和dcast函数,自己写一遍自定义函数实现同样的功能,就数据框的长
本文介绍基于Python语言,读取Excel表格数据,并基于给定的行数范围内的指定列数据,绘制多条曲线图,并动态调整图片长度的方法。 首先,我们来明确一下本文的需求。...其中,第一列是一个表示时间、循环增长的列,其数值从2023001开始,到2023365结束,然后会继续再从2023001开始,以此类推;并且每一个循环中,有些日期可能会缺失,即并不是每天都有数据的。 ...我们现在希望,对于给定的行数起始值与结束值(已知这个起始值与结束值对应的第一列数据,肯定是一个完整的时间循环),基于表格中后面带有数据的几列(也就是上图中紫色区域内的数据),绘制曲线图;并且由于这几列数据所表示的含义不同...其中,我们希望具体绘制的结果如下图所示。 可以看到,横坐标就是表示时间的数据,纵坐标就是那几列含有数据的列;此外,还需要注意,前面也提到了,时间数据是不断循环的,而每一个循环中时间的数量是不确定的。...设置图例、x轴刻度旋转等属性,并保存图片;最后,通过plt.show()显示绘制的图片。
正文 本篇描述了如何计算R中的数据框并将其添加到数据框中。一般使用dplyr R包中以下R函数: Mutate():计算新变量并将其添加到数据表中。 它保留了现有的变量。...同时还有mutate()和transmutate()的三个变体来一次修改多个列: Mutate_all()/ transmutate_all():将函数应用于数据框中的每个列。...mutate:通过保留现有变量来添加新变量,通过保留现有列来添加新列(sepal_by_petal): library(tidyverse) my_data <- as_tibble(iris) my_data...my_data %>% mutate(sepal_by_petal_l = Sepal.Length/Petal.Length) transmute:通过删除现有变量来创建新变量,删除现有列,添加新列...tbl:一个tbl数据框 funs:由funs()生成的函数调用列表,或函数名称的字符向量,或简称为函数。predicate:要应用于列或逻辑向量的谓词函数。
本文主要目的是通过列属性进行列挑选,比如在同一个数据框中,有的列是整数类的,有的列是字符串列的,有的列是数字类的,有的列是布尔类型的。...,请使用np.datetime64,'datetime'或'datetime64' 要选取所有属性为‘类’的列,请使用“category” 实例 新建数据集 import pandas as pd import...2 False 2.0 white median 4 1 True 1.0 asian high 5 2 False 2.0 white high 我们构建了一个数据框...,每一列的属性均不同。...a列为‘integer’数字类型, b列为‘bool’布尔类型, c列为‘数字’类型, d列为‘category’分类类型, e列为‘object’字符串类型 挑选数据框子集 df.select_dtypes
问题现象某客户在使用触发器将 varchar(4000 char)列的数据从表 A 复制到表 B 时,表 B 上列的数据与 A 上对应列的数据不同且为乱码。...如下截图为 A 的数据及使用触发器复制到 B 的数据:问题的风险及影响数据正确性无法保证。...问题影响的版本所有的 YashanDB 版本问题发生原因YashanDB 在处理触发器场景下的 varchar(4000 char)列的数据复制时,处理机制有误。...解决方法及规避方式将列的长度修改为 varchar(2000 char)或者更小。
背景 我们平常使用excel的时候,都是选中一列,然后直接更改它的格式,但是这种方式并不能彻底改变已有数据的原格式,如下图中的5592689这一个CELL中的数据,尽管我们将整个列都更改为文本类型,但实际上它这个数据仍然是数值类型...,在很多场景下不能满足我们的需求,如数据库在导入Excel表格时,表格中的列数据需要文本形式,如果不是文本形式,导入的数据在数据库中会出现错误(不是想要的数据,如789 数据库中为789.0)。...数据分列 如何真正的将整列数据都更改为文本格式,我们就需要用的数据分列的功能。...第一步:选中要修改的列,点击上方数据,找分列后点击分列 第二步:点击分列 第三步:点击下一步 第四步:点击下一步,选择文本 第五步:确认之后,检查数据,会发现数字那一个CELL的左上角有一个小箭头
领取专属 10元无门槛券
手把手带您无忧上云