首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

NIPS 2018 | 哪种特征分析法适合你的任务?Ian Goodfellow提出显著性映射的可用性测试

随着机器学习的复杂度和影响力不断提升,许多人希望找到一些解释的方法,用于阐释学得模型的重要属性 [1, 2]。对模型的解释可能有助于模型满足法规要求 [3],帮助从业人员对模型进行调试 [4],也许还能揭示模型学到的偏好或其他预期之外的影响 [5, 6]。显著性方法(Saliency method)是一种越来越流行的工具,旨在突出输入(通常是图像)中的相关特征。尽管最近有一些令人振奋的重大研究进展 [7-20],但是解释机器学习模型的重要努力面临着方法论上的挑战:难以评估模型解释的范围和质量。当要在众多相互竞争的方法中做出选择时,往往缺乏原则性的指导方针,这会让从业者感到困惑。

02

2017-NIPS-PointNet++:Deep Hierarchical Feature Learning on Point Sets in a Metric Space

这篇文章[1]是 PointNet 的改进版。PointNet 是直接将神经网络用于点云数据处理的先锋,虽然 PointNet 在 3D 任务上取得不错的效果,但其还是存在不足。PointNet 忽略了点云数据间的空间局部结构,从而不能很好地识别更细粒度的模型,也不能很好地泛化到复杂的场景。PointNet++ 则针对这个问题,在 PointNet 基础上引入了层级式的嵌套结构来捕获局部特征。此外,真实的点云数据采集往往是不均匀的(因为采样时是从传感器点状发出信号的,自然离传感器近的采样密度高,远的密度低),而这会导致在均匀采样的点云数据集下训练的模型性能产生明显下降。作者在 PointNet++ 中提出了一种新的针对集合数据的学习层,其可以自适应地结合不同尺度下学习到的特征。广泛的实验数据显示 PointNet++ 可以有效且鲁棒地学习到深层的点云数据集合特征,在 3D 点云任务上达到了超越已有的 SOTA 性能。

02
领券