首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

PyTorch: 张量的拼接、切分、索引

本文已收录于Pytorch系列专栏: Pytorch入门与实践 专栏旨在详解Pytorch,精炼地总结重点,面向入门学习者,掌握Pytorch框架,为数据分析,机器学习及深度学习的代码能力打下坚实的基础...:在维度dim 上,按 index 索引数据 返回值:依index 索引数据拼接的张量 input : 要索引的张量 dim 要索引的维度 index 要索引数据的序号 code: t = torch.randint...,而torch.index_select通过该张量索引原tensor并且拼接返回。...[2, 5, 8]]) t_select: tensor([[4, 5, 0], [2, 5, 8]]) 2.2 torch.masked_select 功能:按mask 中的...True 进行索引 返回值:一维张量(无法确定true的个数,因此也就无法显示原来的形状,因此这里返回一维张量) input : 要索引的张量 mask 与 input 同形状的布尔类型张量

1.3K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pytorch中张量的高级选择操作

    在某些情况下,我们需要用Pytorch做一些高级的索引/选择,所以在这篇文章中,我们将介绍这类任务的三种最常见的方法:torch.index_select, torch.gather and torch.take...它的作用是从输入张量中按照给定的索引值,选取对应的元素形成一个新的张量。它沿着一个维度选择元素,同时保持其他维度不变。也就是说:保留所有其他维度的元素,但在索引张量之后的目标维度中选择元素。...torch.gather torch.gather 是 PyTorch 中用于按照指定索引从输入张量中收集值的函数。...它允许你根据指定的索引从输入张量中取出对应位置的元素,并组成一个新的张量。...torch.take torch.take 是 PyTorch 中用于从输入张量中按照给定索引取值的函数。

    21010

    PyTorch中张量的创建方法的选择 | Pytorch系列(五)

    文 |AI_study 欢迎回到PyTorch神经网络编程系列。在这篇文章中,我们将仔细研究将数据转换成PyTorch张量的主要方法之间的区别。 ?...张量和PyTorch张量之间的抽象概念的区别在于PyTorch张量给了我们一个具体的实现,我们可以在代码中使用它。 ?...在上一篇文章中《Pytorch中张量讲解 | Pytorch系列(四)》,我们了解了如何使用Python列表、序列和NumPy ndarrays等数据在PyTorch中创建张量。...这是torch.Tensor() 构造函数缺少配置选项的示例。这也是使用 torch.tensor() 工厂函数创建张量的原因之一。 让我们看一下这些替代创建方法之间的最后隐藏的区别。...对于索引0,前两个o1和o2仍具有原始值1,而对于索引0,后两个 o3 和 o4 具有新值0。

    2K41

    PyTorch使用------张量的类型转换,拼接操作,索引操作,形状操作

    前言 学习张量的拼接、索引和形状操作在深度学习和数据处理中至关重要。 拼接操作允许我们合并不同来源或不同维度的数据,以丰富模型输入或构建复杂网络结构。...索引操作则提供了精确访问和操作张量中特定元素或子张量的能力,这对于数据预处理、特征提取和错误调试尤为关键。...张量索引操作 我们在操作张量时,经常需要去进行获取或者修改操作,掌握张量的花式索引操作是必须的一项能力。...view 函数也可以用于修改张量的形状,但是其用法比较局限,只能用于存储在整块内存中的张量。...在 PyTorch 中,有些张量是由不同的数据块组成的,它们并没有存储在整块的内存中,view 函数无法对这样的张量进行变形处理,例如: 一个张量经过了 transpose 或者 permute 函数的处理之后

    6610

    5 个PyTorch 中的处理张量的基本函数

    每个深度学习初学者都应该知道这5个Pytorch 的基本函数。 能够以准确有效的方式构建神经网络是招聘人员在深度学习工程师中最受追捧的技能之一。...PyTorch 是一个 主要用于深度学习的Python 库。PyTorch 最基本也是最重要的部分之一是创建张量,张量是数字、向量、矩阵或任何 n 维数组。...中创建张量 PyTorch 允许我们使用 torch 包以多种不同的方式创建张量。...torch.index_select() 这个函数返回一个新的张量,该张量使用索引中的条目(LongTensor)沿维度 dim 对输入张量进行索引。...indices = torch.FloatTensor([0, 2]) describe(torch.index_select(x, dim=1, index=indices)) 此函数在张量的非连续索引这种复杂索引中很有用

    1.9K10

    CNN中张量的输入形状和特征图 | Pytorch系列(三)

    卷积神经网络 在这个神经网络编程系列中,我们正在努力构建卷积神经网络(CNN),所以让我们看看在CNN中的张量输入。 ? 在前两篇文章中,我们介绍了张量和张量的基本属性——阶、轴和形状。...注意,张量的形状 编码了关于张量轴、阶和索引的所有相关信息,因此我们将在示例中考虑该形状,这将使我们能够计算出其他值。下面开始详细讲解。 CNN输入的形状 CNN输入的形状通常长度为4。...如果我们了解这些特征中的每一个以及它们在张量中的轴位置,那么我们就可以对张量数据结构有一个很好的总体理解。 为了分解这个,我们将从后往前推敲,考虑从右到左的轴。...就访问数据方面而言,我们需要三个索引。我们选择颜色通道,高度和宽度以获取特定的像素值。 图片批次(Image Batches) 这将引出四个轴中的第一个轴,用来代表批次大小。...给定一个代表一批图片的张量(类似于上面),我们能使用四个索引定位到一批图片中特定图片的特定通道的特定像素值。 输出通道和特征图 让我们看一下在通过卷积层转换后,张量颜色通道轴是如何变化的解释。

    3.8K30

    【PyTorch入门】 张量的介绍及常用函数和数据基础【一】

    PyTorch 中的底层框架:张量 (Tensor) 在 PyTorch 中,张量 (Tensor) 是其核心的数据结构之一,几乎所有操作都与张量密切相关。...数据类型 (dtype):张量中数据的类型,如浮点型(torch.float32)、整型(torch.int64)等。可以通过 .dtype 获取。...提供了对张量的求和、求平均、最大值、最小值等操作。...初始化 PyTorch 所有随机数生成操作的种子,确保在不同的运行中能够生成相同的随机数序列,从而使得实验的结果可复现。...# 设置随机种子 torch.manual_seed(42) # 生成一个随机张量 x1 = torch.rand(3, 3) print("原始随机张量:") print(x1) # 获取当前随机数生成器的状态

    14510

    深度学习中关于张量的阶、轴和形状的解释 | Pytorch系列(二)

    文 |AI_study 今天是《高效入门Pytorch》的第二篇文章,上一篇我们讲解到《张量解释——深度学习的数据结构》。 在这篇文章中,我们将深入研究张量,并介绍三个基本的张量属性,阶,轴和形状。...这些概念建立在一个又一个的基础上,从阶开始,然后是轴,最后到形状,所以要注意这三者之间的关系。 ? 阶、轴和形状都与我们在上一篇文章中讨论的索引概念有着根本的联系。如果你没看过,我强烈建议你去看看。...这只是不同研究领域使用不同词汇来指代同一概念的另一个例子。别搞混了。 阶和轴 张量的阶告诉我们访问(引用)张量数据结构中的特定数据元素需要多少个索引。...注意,在PyTorch中,张量的大小和形状是一样的。 3 x 3的形状告诉我们,这个2阶张量的每个轴的长度都是3,这意味着我们有三个沿着每个轴可用的索引。现在让我们看看为什么张量的形状如此重要。...很快,我们将看到在PyTorch中创建张量的各种方法。 文章中内容都是经过仔细研究的,本人水平有限,翻译无法做到完美,但是真的是费了很大功夫。

    3.2K40

    PyTorch从入门到放弃之张量模块

    张量(Tensor)是PyTorch最基本的操作对象。在几何定义中,张量是基于标量、向量和矩阵概念的眼神。通俗理解,可以讲标量视为0维张量,向量视为1维张量,矩阵视为2维张量。...张量的数据类型 PyTorch中创建张量的方法有两种,一种是通过Python数组创建,另一种是从列表中创建。...torch中toech.seed()函数没有参数,用来将随机数的种子设置为随机数,一般不使用。...out=None)->(Tensor,LongTensor),返回新的张量input中指定维度dim中每行的最大值,同时返回每个最大值的位置索引。...PyTorch中的张量默认存放在CPU设备中,如果GPU可用,可以将张量转移到GPU中。CPU张量转换为Cuda张量有两种方法。

    11910

    【深度学习实验】前馈神经网络(七):批量加载数据(直接加载数据→定义类封装数据)

    torch.min函数的dim参数设置为0表示按列计算最小值,.values属性获取最小值的张量。 计算矩阵x每列的最大值。...torch.max函数的dim参数设置为0表示按列计算最大值,.values属性获取最大值的张量。...idx = torch.randperm(x.shape[0]):生成一个随机排列的索引,范围从0到x的行数减1。torch.randperm函数返回一个随机排列的整数序列。...x = x[idx]:根据生成的随机索引对矩阵x进行行重排,打乱数据的顺序。 y = y[idx]:根据生成的随机索引对向量y进行行重排,保持目标变量与输入数据的对应关系。...__getitem__(获取指定索引处的样本) return self.x[idx], self.y[idx]:根据索引idx返回对应位置的输入特征和目标变量。 c.

    15410
    领券