首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Android Studio新特性:使用TFLite模型更简单

TensorFlow Lite是最受欢迎的编写移动端机器学习模型的开发库,在我之前的文章中也写过如何在Android程序中使用TFLite模型。...有了TFLite模型后,我们需要模型开发者提供模型的输入、输出等信息,然后编写封装类,对图片进行预处理(比如裁剪、规范化等等),这对于开发者而言,枯燥而且容易出错。...不足之处 当然,作为新开发的特性,并不是所有的tflite模型都能通过这种方式导入,目前这种使用方法还存在如下几种限制: tflite模型必须包含元数据。...如果你希望得到包含元数据的模型,一种方法是前往TensorFlow Hub下载模型,一种方法是自行为tflite模型添加元数据。...这里有一篇指导说明如何为TFLite模型添加元数据: https://tensorflow.google.cn/lite/convert/metadata 目前进支持图片分类和风格迁移类的模型,当然随着开发进程

2.4K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    AIoT应用创新大赛-基于TencentOS Tiny 的多功能行人检测仪

    选取来自COCO开源数据集中的一部分,因为COCO包含了常见的80多类物体,但我们这里只需要”person“这个单类,所以需要设定一个Python脚本循环遍历数据集中的每张图像和对应的边界框,如果图像带有标签为...w=201&h=104] 训练方法可以参考谷歌提供的教程: https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro...的环境里,使用python inference_yolo-s_tflite.py运行就可以了 选取几张行人检测效果还凑合的图片: [hnPGNcxE8PRsb3ii4ZuHcg.png?.../tflite-micro.git 2.利用python脚本生成代码工程 python3 tensorflow/lite/micro/tools/project_generation/create_tflm_tree.py...YOLO label的坐标和真实图像中坐标的对应关系: [F845qFsMeNH2x5BZjPwwQQ.png?

    2.2K200

    TensorFlow 2.0 的新增功能:第三、四部分

    使用 TF 2.0 的 Python API 时,现在可以导出某些本机… 了解核心数据流模型 在我们研究SavedModel格式的细微差别之前,重要的是要首先了解 TensorFlow 模型的真正含义。...可移植性:数据流图是模型中代码的语言无关表示形式。 这使得可以在 Python 中构建数据流图并以较低级别的语言(例如 C 或 Java)将其还原以进行低延迟推理。...通过使用FlatBuffers,TFLite 可以绕过许多传统的文件解析和非解析操作,这在计算上非常昂贵。 TFLite 模型优化也一直延伸到设备上的硬件。...您还可以通过使用tf.function包装数据集迭代来利用数据集异步预取和流传输功能,该迭代将 Python 交互转换为与 AutoGraph 等效的图操作。...尽管inputs参数是不言自明的,但training参数可能不会一直使用,但是对于在该层中使用批量规范化和丢弃的情况而言是必不可少的。

    2.4K20

    tf.lite

    class Optimize: Enum定义在生成tflite图时要应用的优化。class RepresentativeDataset: 用于评估优化的代表性数据集。...可能产生的异常:ValueError: When indices are not consistent.四、tf.lite.Interpreter这使得在Python中可以访问TensorFlow Lite...可以在多线程Python环境中使用这个解释器,但是必须确保每次只从一个线程调用特定实例的函数。因此,如果希望有4个线程同时运行不同的推论,请为每个线程创建一个解释器作为线程本地数据。...这用于将TensorFlow GraphDef或SavedModel转换为TFLite FlatBuffer或图形可视化。属性:inference_type:输出文件中实数数组的目标数据类型。...返回:转换后的数据。例如,如果TFLite是目标,那么这将是一个字节数组中的TFLite flatbuffer。

    5.3K60

    了解机器学习深度学习常用的框架、工具

    其核心概念涵盖张量、数据类型、动态图机制、自动求导、优化器选择以及模型的保存和加载等。PyTorch 的设计哲学与 Python 的设计哲学相似,强调易读性和简洁性优于隐式复杂性。...TensorFlow 的核心概念包括张量(Tensor)、计算图(Graph)和会话(Session)。张量是 TensorFlow 的基本数据类型,类似于多维数组。...配置文件主要包含网络结构、数据层、损失函数、优化器等信息。此外,Caffe 还提供了 Python 和 Matlab 的接口,为用户进行实验和开发提供了便利。...TFLite TFLite 官方文档:https://www.tensorflow.org/lite/guide?...对于非树形结构的模型,比如深度神经网络,Treelite 就不适用。 总体而言,Treelite 是一个强大且专注于树模型快速部署的工具。

    1.5K01

    使用Python实现深度学习模型:在嵌入式设备上的部署

    这不仅可以实现实时数据处理,还能大幅降低数据传输的延迟和成本。本文将介绍如何使用Python将深度学习模型部署到嵌入式设备上,并提供详细的代码示例。...所需工具Python 3.xTensorFlow 或 PyTorch(本文以TensorFlow为例)TensorFlow Lite(用于嵌入式设备)Raspberry Pi 或其他嵌入式设备步骤一:安装所需库首先...可以使用以下命令安装:pip install tensorflow tensorflow-lite步骤二:训练深度学习模型我们将使用MNIST数据集训练一个简单的卷积神经网络(CNN)模型。...保存转换后的模型with open('mnist_model.tflite', 'wb') as f: f.write(tflite_model)步骤四:在嵌入式设备上运行模型我们可以使用TensorFlow...Lite:pip install tflite-runtime运行模型: 在Raspberry Pi上创建一个Python脚本(如run_model.py),并将上述运行模型的代码复制到该脚本中。

    42711

    使用Tensorflow进行实时移动视频对象检测

    要安装所需的python库: # Install Tensorflow (tensorflow-gpu for GPU) pip install tensorflow --upgrade # Install...摘要表将在以后的阶段中使用,以生成用于模型训练的建模数据。 汇总表-训练集 可以在此处找到Jupyter笔记本中用于可视化以上图像并生成汇总表的python脚本。...要将图像数据转换为TFRecord格式,将使用以下python模板,并以创建的摘要表作为参考: """ Usage: # From tensorflow/models/ # Create train...cd $TF_API_DIR python object_detection/export_tflite_ssd_graph.py \ --pipeline_config_path=$MODEL_CONFIG...tflite_graph.pbtxt/tmp/tflite 之后,将使用TensorFlow Lite优化转换器TOCO从Tensorflow冻结图源文件(tflite_graph.pb)中获取优化模型

    2.2K00

    【Ubuntu】Tensorflow对训练后的模型做8位(uint8)量化转换

    版本 Python 版本 编译器 编译工具 cuDNN CUDA tensorflow_gpu-1.13.1 2.7 、3.3-3.6 GCC 4.8 Bazel 0.19.2 7.4 10.0 tensorflow_gpu...bazel: # Step 1: Install required packages sudo apt-get install pkg-config zip g++ zlib1g-dev unzip python3...格式模型 除了使用transform_graph工具对pb模型进行量化转换外,还可以使用TFLite对模型进行量化处理,但是需要注意的是,使用TFLite转换得到的量化模型是tflite结构,意味着只能在...tflite中运行(大部分场景为移动端),可以参考官网详细使用步骤:【https://www.tensorflow.org/lite/performance/post_training_quantization...) converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE] tflite_quant_model = converter.convert

    1.8K30

    使用Python实现深度学习模型:跨平台模型移植与部署

    所需工具Python 3.xTensorFlow 或 PyTorch(本文以TensorFlow为例)TensorFlow Lite(用于移动和嵌入式设备)Docker(用于容器化部署)步骤一:安装所需库首先...可以使用以下命令安装:pip install tensorflow tensorflow-lite步骤二:训练深度学习模型我们将使用MNIST数据集训练一个简单的卷积神经网络(CNN)模型。...以下是训练模型的代码:import tensorflow as tf# 加载MNIST数据集mnist = tf.keras.datasets.mnist(x_train, y_train), (x_test...保存转换后的模型with open('mnist_model.tflite', 'wb') as f: f.write(tflite_model)步骤四:在移动设备上运行模型我们可以使用TensorFlow.../models/mnist_model.h5# 安装所需的Python库RUN pip install tensorflow# 运行Python脚本CMD ["python", "-c", "import

    26510
    领券