首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

SQL调优之性能调优

如果进行转化的话,会得到如下的语句: SELECT * FROM Table1 WHERE column1 = 5 AND column3 7 AND column2 5 进行这样变化后的语句会比第一个执行的更快...针对专门操作符的调优 前面,讲的是关于查询条件的一般规则,在这一节中,将讨论如何使用专门的操作符来改进 SQL 代码的性能。...第一个优化缺陷就是很多优化器只优化一个 SELECT 语句中一个 WHERE 语句,所以查询 1 的两个 SELECT 语句都被执行。...以上是作者对如何提高 SQL 性能的一些总结,这些规则并一定在所有的数据库系统上都能带来性能的提高,但是它们一定不会对数据库的性能带来下降,所以掌握并使用这些规则可以对数据库 应用程序的开发有所帮助。...本文总结的是一些 SQL 性能调优的比较初级的方面,SQL 调优还包括 Order by,Group by 以及 Index 等等。

1.8K30

Tomcat 性能调优之 JVM 调优

因此在对Web 容器( 应用服务器) 的调优中必不可少的是对于 JVM 的调优。...对于 JVM 的调优,主要有两个方面考虑: 内存大小配置 垃圾回收算法选择 当然,确切的说,以上两点并不互相独立,内存的大小配置也会影响垃圾回收的执行效率。...那我们前面一直在说根据不同的应用,观察分析设置堆的大小,堆的各个代的大小,那具体观察什么呢?...延迟、吞吐量调优 其他 JVM 配置 垃圾回收算法对应到的就是不同的垃圾收集器,具体到在 JVM 中的配置,是使用 -XX:+UseParallelOldGC 或者 -XX:+UseConcMarkSweepGC...所谓调优,就是一个不断调整和优化的过程,需要观察、配置、测试再如此重复。有相关经验的朋友欢迎留言补充! 说到底,那上面的这些选项是要配置在哪里呢?

1.7K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Spark 性能调优之开发调优

    如果没有对Spark作业进行合理的调优,Spark作业的执行速度可能会很慢,这样就完全体现不出Spark作为一种快速大数据计算引擎的优势来。因此,想要用好Spark,就必须对其进行合理的性能优化。...Spark的性能调优实际上是由很多部分组成的,不是调节几个参数就可以立竿见影提升作业性能的。...笔者根据之前的Spark作业开发经验以及实践积累,总结出了一套Spark作业的性能优化方案。整套方案主要分为开发调优、资源调优、数据倾斜调优、shuffle调优几个部分。...开发调优和资源调优是所有Spark作业都需要注意和遵循的一些基本原则,是高性能Spark作业的基础;数据倾斜调优,主要讲解了一套完整的用来解决Spark作业数据倾斜的解决方案;shuffle调优,面向的是对...本文作为Spark性能优化指南的基础篇,主要讲解开发调优。 2. 开发调优 2.1 调优概述 Spark性能优化的第一步,就是要在开发Spark作业的过程中注意和应用一些性能优化的基本原则。

    97231

    Spark 性能调优之资源调优

    Spark的性能调优实际上是由很多部分组成的,不是调节几个参数就可以立竿见影提升作业性能的。...笔者根据之前的Spark作业开发经验以及实践积累,总结出了一套Spark作业的性能优化方案。整套方案主要分为开发调优、资源调优、数据倾斜调优、shuffle调优几个部分。...开发调优和资源调优是所有Spark作业都需要注意和遵循的一些基本原则,是高性能Spark作业的基础;数据倾斜调优,主要讲解了一套完整的用来解决Spark作业数据倾斜的解决方案;shuffle调优,面向的是对...本文作为Spark性能优化指南的基础篇,主要讲解资源调优。 2. 资源调优 2.1 调优概述 在开发完Spark作业之后,就该为作业配置合适的资源了。...所谓的Spark资源参数调优,其实主要就是对Spark运行过程中各个使用资源的地方,通过调节各种参数,来优化资源使用的效率,从而提升Spark作业的执行性能。

    1.7K30

    Spark 性能调优之Shuffle调优

    调优概述 大多数 Spark 作业的性能主要就是消耗在了 shuffle 环节,因为该环节包含了大量的磁盘IO、序列化、网络数据传输等操作。...因此,如果要让作业的性能更上一层楼,就有必要对 shuffle 过程进行调优。...但是也必须提醒大家的是,影响一个 Spark 作业性能的因素,主要还是代码开发、资源参数以及数据倾斜,shuffle 调优只能在整个 Spark 的性能调优中占到一小部分而已。...调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如96m),从而减少拉取数据的次数,也就可以减少网络传输的次数,进而提升性能。...,建议参考后面的几个参数调优,通过 bypass 机制或优化的 HashShuffleManager 来避免排序操作,同时提供较好的磁盘读写性能。

    1.3K30

    Spark 的性能调优

    下面这些关于 Spark 的性能调优项,有的是来自官方的,有的是来自别的的工程师,有的则是我自己总结的。...基本概念和原则 首先,要搞清楚 Spark 的几个基本概念和原则,否则系统的性能调优无从谈起: 每一台 host 上面可以并行 N 个 worker,每一个 worker 下面可以并行 M 个 executor...有的配置在不同的 MR 框架/工具下是不一样的,比如 YARN 下有的参数的默认取值就不同,这点需要注意。 明确这些基础的事情以后,再来一项一项看性能调优的要点。...根据我的测试,独占模式的性能要略好与共享模式。 GC 调优。打印 GC 信息:-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps。...可供参考的文档:官方调优文档 Tuning Spark,Spark 配置的官方文档,Spark Programming Guide,Running Spark on YARN,JVMGC 调优文档,JVM

    43710

    Spark的性能调优

    下面这些关于Spark的性能调优项,有的是来自官方的,有的是来自别的的工程师,有的则是我自己总结的。 ?...基本概念和原则 首先,要搞清楚Spark的几个基本概念和原则,否则系统的性能调优无从谈起: 每一台host上面可以并行N个worker,每一个worker下面可以并行M个executor,task们会被分配到...其次,涉及性能调优我们经常要改配置,在Spark里面有三种常见的配置方式,虽然有些参数的配置是可以互相替代,但是作为最佳实践,还是需要遵循不同的情形下使用不同的配置: 设置环境变量,这种方式主要用于和环境...有的配置在不同的MR框架/工具下是不一样的,比如YARN下有的参数的默认取值就不同,这点需要注意。 明确这些基础的事情以后,再来一项一项看性能调优的要点。...根据我的测试,独占模式的性能要略好与共享模式。 GC调优。打印GC信息:-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps。

    2.2K20

    MySQL性能调优

    后端程序员在面试中,经常会被问到SQL调优的操作,于是我也是去补习了一下这方面的知识,感谢各方大佬提供的点子,这里总结如下。...3- 通常来说,把可以为NULL的列改为NOT NULL不会对性能提升有多少帮助,只是如果计划在列上创建索引,就应该将该列设置为NOT NULL。...选取适用的字段属性 一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽可能小。...LIKE语句操作 一般情况下不鼓励使用like操作,如果非使用不可,如何使用也是一个问题。like "%aaa%" 不会使用索引而like "aaa%"可以使用索引。...一个常见的问题是当偏移量非常大的时候,比如:LIMIT 10000,20这样的查询,MySQL需要查询10020条记录然后只返回20条记录,前面的10000条都将被抛弃,这样的代价非常高。

    81710

    Tomcat性能调优

    由于Web应用程序跑在Tomcat工作线程,因此Web应用对请求的处理时间也直接影响Tomcat性能,而Tomcat和Web应用在运行过程中所用到的资源都来自os,因此调优需要将服务端看作是一个整体来考虑...I/O调优指选择NIO、NIO.2还是APR 线程池调优指的是给Tomcat的线程池设置合适的参数,使得Tomcat能够又快又好地处理请求 I/O模型 I/O调优实际上是连接器类型的选择,一般情况下默认都是...APR 除非你的Web应用用到了TLS加密传输,而且对性能要求极高,这个时候可以考虑APR,因为APR通过OpenSSL来处理TLS握手和加/解密。...线程池调优 跟I/O模型紧密相关的是线程池,线程池的调优就是设置合理的线程池参数。...调优很多时候是在找系统瓶颈 假如有个状况:系统响应比较慢,但CPU的用率不高,内存有所增加,通过分析Heap Dump发现大量请求堆积在线程池的队列中,请问这种情况下应该怎么办呢?

    87611

    Spark性能调优

    一定要在action操作之后; 2、Spark项目开发流程:    数据调研 --> 需求分析 --> 技术方案设计 --> 数据库设计 --> 编码实现 --> 单元测试 --> 本地测试 --> 性能调优...--> Troubshoting --> 数据倾斜解决 3、常规性能调优: 3.1、分配更多资源    性能和速度的提升在一定范围内和运算资源成正比 (1)分配哪些资源?...,从而避免文件拉取失败: --conf spark.core.connection.ack.wait.timeout = 300 ; 5、Shuffle调优:   Spark的一些算子会触发shuffle...,也可能会导致频繁的spill;   (3)查看Spark UI,如果每个task的shuffle write和shuffle read很大,则可以考虑进行相应调优; spark.shuffle.file.buffer...,可以避免一些OOM、GC等内存相关的异常;   (4)SortShuffle可以通过开启Bypass机制限制排序机制,即当输出文件个数小于某个设定值时不会触发排序机制; 6、算子调优 6.1、使用mapPartitions

    1.1K20

    性能调优思路

    调优步骤:衡量系统现状、设定调优目标、寻找性能瓶颈、性能调优、衡量是否到达目标(如果未到达目标,需重新寻找性能瓶颈)、性能调优结束。...调优方案:增加Thread.sleep,以释放CPU 的执行权,降低CPU 的消耗。以损失单次执行性能为代价的,但由于其降低了CPU 的消耗,对于多线程的应用而言,反而提高了总体的平均性能。...对于GC频繁,则需要通过JVM调优或程序调优,降低GC的执行次数。 CPU sy高的解决方法 CPU sy 高的原因主要是线程的运行状态要经常切换,对于这种情况,常见的一种优化方法是减少线程数。...调优方案:将线程数降低 这种调优过后有可能会造成CPU us过高,所以合理设置线程数非常关键。...总结 好的调优策略是收益比(调优后提升的效果/调优改动所需付出的代价)最高的,通常来说简单的系统调优比较好做,因此尽量保持单机上应用的纯粹性, 这是大型系统的基本架构原则。

    93860

    Spark性能调优06-JVM调优

    Spark 调优和 JVM 调优的关系 再JVM虚拟机中,当创建的对象的数量很多时,Eden 和 Survior1 区域会很快的满溢,就需要进行频繁地 Minor GC,这样会导致有一些生命周期较短的对象迅速长到...Spark的JVM调优 spark.storage.memoryFraction 参数说明: 该参数用于设置RDD持久化数据在Executor内存中能占的比例,默认是0.6。...shuffle操作在进行聚合时,如果发现使用的内存超出了这个20%的限制,那么多余的数据就会溢写到磁盘文件中去,此时就会极大地降低性能 参数调优建议: 如果Spark作业中的RDD持久化操作较少,shuffle...此外,如果发现作业由于频繁的gc导致运行缓慢,意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值 资源参数的调优,没有一个固定的值,需要根据自己的实际情况(包括Spark作业中的shuffle...操作数量、RDD持久化操作数量以及spark web ui中显示的作业gc情况)来灵活的调优 4.

    1.4K10

    Spark性能调优01-资源调优

    理解作业基本原理,是我们进行资源参数调优的基本前提。 3. spark内存管理 (1) spark-1.5.x版本以前使用静态内存管理 ?...参数调优建议: 每个Spark作业的运行一般设置50~100个左右的Executor进程比较合适,设置太少或太多的Executor进程都不好。...Executor内存的大小,很多时候直接决定了Spark作业的性能,而且跟常见的JVM OOM异常,也有直接的关联。 参数调优建议: 每个Executor进程的内存设置4G~8G较为合适。...参数调优建议: Executor的CPU core数量设置为2~4个较为合适。...这个参数极为重要,如果不设置可能会直接影响你的Spark作业性能。 参数调优建议: Spark作业的默认task数量为500~1000个较为合适。

    1.2K20

    GC 性能调优

    什么是调优?...根据需求进行JVM规划和预调优 优化运行JVM运行环境(慢,卡顿) 解决JVM运行过程中出现的各种问题(OOM) 调优,从规划开始 调优,从业务场景开始,没有业务场景的调优都是耍流氓 无监控(压力测试...,能看到结果),不调优 步骤: 熟悉业务场景(没有最好的垃圾回收器,只有最合适的垃圾回收器) 响应时间、停顿时间 [CMS G1 ZGC] (需要给用户作响应) 吞吐量 = 用户时间 /(...扩容或调优,让它达到 用压测来确定 优化环境 有一个50万PV的资料类网站(从磁盘提取文档到内存)原服务器32位,1.5G 的堆,用户反馈网站比较缓慢,因此公司决定升级,新的服务器为64位,16G 的堆内存...PS -> PN + CMS 或者 G1 系统CPU经常100%,如何调优?

    1.4K10

    Tomcat性能调优

    提高Tomcat性能一般从三方面入手,JVM内存调整、禁用DNS查询、调整线程数。 一、JVM内存调整   -Xms 表示JVM初始化堆的大小,-Xmx表示JVM堆的最大值。...为了消除DNS查询对性能的影响我们可以关闭DNS查询,方式是修改server.xml文件中的enableLookups参数值 enableLookups="false" 三、调整线程数   另外一个可通过应用程序的连接器...(Connector)进行性能控制的的参数是创建的处理请求的线程数。...注意事项: 设置NewSize、MaxNewSize相等,"new"的大小最好不要大于"old" 的一半,原因是old区如果不够大会频繁的触发主GC,大大降低了性能。...因为对于操作系统,请求内存的系统调用会占用大量的cpu时间,所以频繁的请求、释放内存将会导致性能的严重下降。

    3.4K21
    领券