采用建表过程中,直接:stored as orc,就可以指定。 然而用传统文本文件导入的方式,再进行查询测试,如select count(*) from table XX....则会出现:Failed with exception java.io.IOException:java.io.IOException: Malformed ORC file的问题。...找到解决办法,由于TXT文档导入,无法生成ORC数据结构,所以需要先导入临时表,再从临时表中再导到ORC表中。
ORC文件格式 在Hive 0.11.0版本引入此功能 ORC 是 Optimized Row Columnar 的缩写,ORC 文件格式提供一种高效的方法来存储Hive数据。...当Hive读取,写入和处理数据时,使用 ORC 文件格式可以提高性能。...state string, zip int ) STORED AS orc tblproperties ("orc.compress"="NONE"); 除此之外,还可以为表指定压缩算法: CREATE...tblproperties ("orc.compress"="Zlib"); 通常不需要设置压缩算法,因为Hive会设置默认的压缩算法 hive.exec.orc.default.compress=...我们通常的做法是将 HDFS 中的数据作为文本,在其上创建 Hive 外部表,然后将数据以 ORC 格式存储在Hive中: CREATE TABLE Addresses_ORC STORED AS ORC
在波士顿的Re-Work深度学习峰会上,高通公司的人工智能研究员Chris Lott介绍了他的团队在新的语音识别程序方面的工作。...但Lott认为高通的解决方案是前进的方向。“云固然很强大,但我们认为语音识别应该直接在设备上实现。”
使用正常的org.apache.orc.mapred.OrcInputFormat读orc文件时每行返回的值是: null {"name":"123","age":"456"} null {...即返回: 123 456 456 789 【重写InputFormat,单文件读取】 package is.orc; import org.apache.hadoop.conf.Configuration...; import org.apache.orc.mapred.OrcInputFormat; import org.apache.orc.mapred.OrcMapredRecordReader; import...org.apache.orc.mapred.OrcStruct; import org.apache.orc.Reader; import org.apache.orc.Reader.Options;...对应到orc格式时没找到官方提供的包,只能自己写一个。
智能识别文字识别率高吗? 智能识别文字是如何实现的?...智能识别文字识别率高吗? 智能识别文字在平时生活中大家也都接触过,很多人会问智能识别文字识别率高吗?...文字识别率和识别的软件以及应用的技术有很大关系,现在技术最为先进的智能识别文字软件识别率能高达99.8%以上。
总结: 完整用例 #include "llvm/ExecutionEngine/Orc/LLJIT.h" #include "llvm/IR/LegacyPassManager.h" #include...llvm/Transforms/Scalar.h" #include "ExampleModules.h" using namespace llvm; using namespace llvm::orc
ORC实例总结 总结 因为API茫茫多,逻辑上的一些概念需要搞清,编码时会容易很多。 JIT的运行实体使用LLVMOrcCreateLLJIT可以创建出来,逻辑上的JIT实例。...LLVMShutdown(); return MainResult; } ORC完整 //===------ OrcV2CBindingsBasicUsage.c - Basic OrcV2 C Bindings
在大数据时代,列式存储变得越来越流行了,当然并不是说行式存储就没落了,只是针对的场景不同,行式存储的代表就是我们大多数时候经常用的数据库,比较适合数据量小,字段数目少,查询性能高的场景,列式存储主要针对大多数互联网公司中的业务字段数目多...Apache Hive1.2.1 先看下列式存储的两个代表框架: Apache Parquet比较适合存储嵌套类型的数据,如json,avro,probuf,thrift等 Apache ORC...下面看下具体以orc为例子的场景实战: 需求: 将Hbase的表的数据,加载到Hive中一份,用来离线分析使用。...--stored as textfile; tblproperties ("orc.compress"="SNAPPY"); --从临时表,加载数据到orc中 insert into...table etldb select * from etldb_hbase; (4)加载完成后,就可以离线分析这个表了,用上orc+snappy的组合,查询时比直接 hive关联hbase
参考文章:https://prestosql.io/blog/2019/04/23/even-faster-orc.html 最近Presto的官网发表了一篇文章,叙述了新版本的Presto对ORC格式读取的性能优化过程...在 TPC-DS benchmark 测试中,对于 ORC 格式新的读取方式 Presto 总的查询耗费时间减少了约5%,CPU使用量减少了约9%。 What improved?...对于ORC各个数据类型的优化 Why exactly is this faster?.../src/main/java/io/prestosql/orc/stream/BooleanInputStream.java#L218)。...对使用zlib压缩算法的ORC格式进行测试,结果如下。
使用Zlib压缩率高,但效率差一些;使用Snappy效率高,但压缩率低。 Parquet表支持Uncompress、Snappy、Gzip、Lzo压缩,默认不压缩Uncompressed。...Gzip方式压缩率高,效率低;而Snappy、Lzo效率高,压缩率低。 ORC表压缩 ORC表的压缩,需要通过表属性orc.compress来指定。...首先创建一个非压缩的ORC表: create table compress_orc_none ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED...AS orc tblproperties ("orc.compress"="NONE") as select * from compress_2; ?...t' STORED AS orc tblproperties ("orc.compress"="SNAPPY") as select * from compress_2; ?
pytesseract 识别率低提升方法 一.跟换识别语言包 下载地址https://github.com/tesseract-ocr/tessdata 二.修改图片的灰度 from PIL import
然后在找到这个关于ORC的文章。...如果你英文很好,参考这里: https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC 一、ORC文件格式 ORC的全称是(Optimized...ORC在RCFile的基础上进行了一定的改进,所以与RCFile相比,具有以下一些优势: - 1、ORC中的特定的序列化与反序列化操作可以使ORC file writer根据数据类型进行写出。...- 4、除了上面三个理论上就具有的优势之外,ORC的具体实现上还有一些其他的优势,比如ORC的stripe默认大小更大,为ORC writer提供了一个memory manager来管理内存使用情况。...Data Statistics ORC reader用这个索引来跳过读取不必要的数据,在ORC writer生成ORC文件时会创建这个索引文件。
一、ORC File文件结构 ORC的全称是(Optimized Row Columnar),ORC文件格式是一种Hadoop生态圈中的列式存储格式,它的产生早在2013年初,最初产生自Apache...2015年ORC项目被Apache项目基金会提升为Apache顶级项目。ORC具有以下一些优势: ORC是列式存储,有多种文件压缩方式,并且有着很高的压缩比。 文件是可切分(Split)的。...ORC的文件结构如下图,其中涉及到如下的概念: ORC文件:保存在文件系统上的普通二进制文件,一个ORC文件中可以包含多个stripe,每一个stripe包含多条记录,这些记录按照列进行独立存储,对应到...ORC文件格式只支持读取指定字段,还不支持只读取特殊字段类型中的指定部分。 使用ORC文件格式时,用户可以使用HDFS的每一个block存储ORC文件的一个stripe。...三、Java操作ORC 到https://orc.apache.org官网下载orc源码包,然后编译获取orc-core-1.3.0.jar、orc-mapreduce-1.3.0.jar、orc-tools
防御一方的反欺诈技术也不断升级,深度学习在风控技术上的应用将使金融行业的反诈骗系统具备更高识别率和精准度。...在金融行业风险控制场景下的应用能够提高黑产识别率,使企业平台具备更有效的防御能力。 在演讲中,李超以混合神经网络为例讲解了深度学习的框架和运行机制,即如何对数据进行逐层处理从而做出风险预测。...天御反欺诈系统不仅能够实现超90%的识别率,还能对欺诈行为做全方面的精细刻画。
CREATE TABLE orc_test( s1 date, s2 string, s3 string ) STORED AS ORC LOCATION '/fayson/orc_test';...ALTER TABLE orc_test ADD COLUMNS (testing string); INSERT overwrite table orc_test SELECT * FROM orc_test...; INSERT into table orc_test SELECT * FROM orc_test; (可左右滑动) ?...string); INSERT overwrite table orc_test SELECT * FROM orc_test; INSERT into table orc_test SELECT...4.ORC文件格式的事务支持尚不完善,具体参考《Hive事务管理避坑指南》,所以在CDH中的Hive中使用ORC格式是不建议的,另外Cloudera Impala也不支持ORC格式,如果你在Hive中创建
testdata_dir_config) # 去掉非法字符,只保留字母数字 textCode = re.sub("\W", "", textCode) return textCode Tesseract-ORC...change_Image_to_text(img)) if __name__ == '__main__': main() 运行结果如下: 未转化前的: RGB JPEG 识别的结果: 9834 5 总结 Tesseract-ORC...对于这种弱验证码识别率还是可以,大部分字符能够正确识别出来。...如果图片验证码稍微变得复杂点,识别率大大降低,会经常识别不出来的情况。我自己也尝试收集 500 张图片来训练 Tesseract-ORC,识别率会有所提升,但识别率还是很低。...如果想要做到识别率较高,那么需要使用 CNN (卷积神经网络)或者 RNN (循环神经网络)训练出自己的识别库。正好机器学习很火爆很流行,学习一下也无妨。
使用该方案后,能快速了解算法对视频识别率的影响,并能方便获取失败用例,用来改进算法。 对于 VR 视频的检测,你是否有更好的方法呢? 欢迎留言探讨。
ORC文件格式 ORC文件格式是一种Hadoop生态圈中的列式存储格式,它的产生早在2013年初,最初产生自Apache Hive,用于降低Hadoop数据存储空间和加速Hive查询速度。...ORC目前没有支持,仍然使用Parquet作为主要的列式存储格式。...文件结构 和Parquet类似,ORC文件也是以二进制方式存储的,所以是不可以直接读取,ORC文件也是自解析的,它包含许多的元数据,这些元数据都是同构ProtoBuffer进行序列化的。...ORC的文件结构入图6,其中涉及到如下的概念: ORC文件:保存在文件系统上的普通二进制文件,一个ORC文件中可以包含多个stripe,每一个stripe包含多条记录,这些记录按照列进行独立存储,对应到...由于ORC中使用了更加精确的索引信息,使得在读取数据时可以指定从任意一行开始读取,更细粒度的统计信息使得读取ORC文件跳过整个row group,ORC默认会对任何一块数据和索引信息使用ZLIB压缩,因此
1、Hive支持 创建表时指定orc格式即可: create table tmp.orc_test(id bigint, name string, age int) stored as orc TBLPROPERTIES...2、SPARK支持 Spark读: df = spark.read.orc("/tmp/test/orc_data") # 读出来的数据是一个dataframe Spark写: df.write.format...("orc").save("/tmp/test/orc_data2") 3、Hadoop Streaming支持 3.1、读orc文件,输出text hadoop jar /usr/local/hadoop.../orc_streaming_test \ -output /tmp/test/orc_streaming_test2 \ -inputformat org.apache.orc.mapred.OrcInputFormat...\ -outputformat org.apache.orc.mapred.OrcOutputFormat \ -mapper is.orc.MyMapper -reducer is.orc.MyReducer
Parquet与ORC:高性能列式存储 列存 、 行存 数据格式层概述 计算层:各种计算引擎 存储层:承载数据的持久化存储 数据格式层:定义了存储层文件内部的组织格式,计算引擎通过格式层的支持来读写文件...OLAP OLTP:行式存储格式(行存) 每行的数据在文件上是连续存储的,读取整行数据效率高,单次IO顺序读即可。...详解 ORC 是大数据分析领域使用最广的列存格式之一,出自于hive项目 数据模型 ORC会给包括根节点在内的中间节点都创建一个column 嵌套类型或者集合类型支持和parquet差别较大 optional...支持Hive Transactions实现,目前只有hive本身集成 类似delta lake/hudi/iceberg 基于Base+Delta+Compaction的设计 parquet 对比 ORC...从原理层面,最大的差别就是对于nestedType和复杂类型的处理上 parquet的算法上要复杂很多,带来的cpu的开销比orc略大 orc的算法相对简单,但是要读取更多数据 因此,这个差异对业务效果的影响
领取专属 10元无门槛券
手把手带您无忧上云