首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Deep-Fake原理揭示:使用WGAN-GP算法构造精致人脸

所以上一节描述WGAN网络时,算法作者想不到的办法让构造的网络满足这个条件,于是”拍脑袋“想出了将网络内部参数的数值全部剪切到(-1,1)之间,这也是造成网络生成图像质量不好的原因。...如果把函数f看做鉴别者网络,把输入的参数x看做是输入网络的图片,那么需要网络对所有输入图片求导后,所得结果求模后不大于1.这里需要进一步解释的是,由于图片含有多个像素点,如果把每一个像素点的值都看成是输入网络的参数..., image_batch): ''' 训练鉴别师网络,它的训练分两步骤,首先是输入正确图片,让网络有识别正确图片的能力。...然后使用生成者网络构造图片,并告知鉴别师网络图片为假,让网络具有识别生成者网络伪造图片的能力 ''' with tf.GradientTape(persistent=True...可以看到网络生成的人脸图像非常细腻生动,虽然有些人脸图像不够清楚,但绝大多数人脸图像,例如第一行第一章人脸图像,你很难想象它是由神经网络生成的虚拟人脸图像,因为它太逼真了。

1.4K21

远程人脸识别系统技术要求 安全分级

人脸图像质量判断 客户端和服务器端均应具备人脸采集样本质量判断的能力,质量判断应至少包括以下几个方面: 人脸图片的模糊程度; 人脸图片的明暗程度; 人脸图片人脸角度; 人脸图片的完整程度...一次性鉴别机制 应防止与人脸识别身份鉴别有关的鉴别数据的重用。...人脸图像质量判断 客户端和服务器端均应具备人脸质量判断的能力,质量判断应至少包括以下几个方面: 人脸图片的模糊程度; 人脸图片的明暗程度; 人脸图片人脸角度; 人脸图片人脸的大小...; 人脸图片的完整程度。...根据比对阈值输出人脸识别判定; 人脸辨识后应清除残留信息。 一次性鉴别机制 应防止与人脸识别身份鉴别有关的鉴别数据的重用。

4K30
您找到你想要的搜索结果了吗?
是的
没有找到

解读 | 生成人脸修复模型:同时使用两个鉴别器,直接合成逼真人脸

简介 这篇论文提出了一个用来进行人脸修复的深度生成模型,如下图所示,针对一副面部图片中的缺失区域,这个模型可以直接修复人脸。 ?...与之前很多其他工作不同,针对人脸修复任务,这篇论文的作者同时使用了两个鉴别器来构建整个模型,因此不论是局部图像还是整个图像,看上去都更加逼真。 2. 方法 2.1 模型结构 ?...语义解析网络用于改进上述生成对抗网络生成的图片,语义解析网络是基于论文《使用全连接卷积编码-解码网络进行物体轮廓检测》,因为这种网络能够提取到图像的高水平特征。...实验结果 正如本文第一张图像所示,生成人脸修复算法有着非常的结果。图 7 展示了这个模型对不同种类的遮盖有着很好的鲁棒性,它和现实应用非常接近。无论什么形状的遮盖,网络都能生成令人满意的结果。 ?...结论 这个基于生成对抗网络的模型具有两个鉴别器和一个语义正则化网络,能够处理人脸修复任务。它能够在随机噪声中成功地合成缺失的人脸部分。 6.

2.9K80

学界 | 要让GAN生成想要的样本,可控生成对抗网络可能会成为你的好帮手

通过实验,证实了CGAN可以有效地根据输入标签生成人脸图像样本。 材料和方法 CGAN由三种神经网络结构组成,发生器/解码器,鉴别器和分类器/编码器。图1中描述了这种CGAN的架构。...结果和讨论 使用CelebA数据库生成多标签的名人人脸图片样本 通过想发生器输入多个标签,CGAN可以生成多标签样本。CelebA数据库由多个标签的图片构成。...从图中可以看出CGAN生成的人脸图片比条件GAN更契合输入标签。例如,使用“Arched Eyebrow”标签时,CGAN生成的图片全部符合这个标签的特征,而条件GAN则有偏差。...结论 这篇论文提出了一种新的生成网络模型,即CGAN,这种模型可以控制生成的图片样本。CGAN包含三个模块,发生器/解码器,鉴别器和分类器/编码器。...通过实验,作者证实了CGAN可以生成具有多个标签的人脸图片。同时,这种控制有效性也可以对生成对抗网络的研究带来一些重要的提升。

1.7K100

不要怂,就是GAN

X中就是我们希望训练出的模型能够生成的目标类型图片集,比如都是各种人脸图片,那么训练过程中D就会不断判断G生成的图片和真实人脸图片谁才是真的,刚开始G生成的图片比较不知所云,所以可以判断,慢慢地G会随着...D的反馈越来越优秀,生成的图片越来越像人脸,从而能以假乱真,影响D的判断,而D也在不断地成长,越来越火眼金睛,从而能识别出G的图片是假的,由于做对比的是各种人脸图片呢,所以G为了骗过D,也会生成类似的人脸...前面说了我们的输入可以改成图片,这里我们的目的是把一匹马转换成一批斑马,现在输入一张马的图片到生成器,结果给到鉴别器,鉴别器从真实的斑马数据集中取照片,和生成的斑马做比较判断,这是第一个GAN结构。...另一个GAN结构,输入一个斑马图片到另一个生成器(这个生成器的训练目的是把斑马转化成马),生成的结果马图片输入到另一个鉴别器,该鉴别器从真实的马数据集中取照片,和生成的马做比较判断。...同时,为了防止模型坍塌,也就是防止生成器为了骗过鉴别器,将所有输入的图片都生成同一张最以假乱真的图片,这就失去了意义,因为没有保持原图片的特征。

85840

CVPR 2021 人脸属性风格解耦

例如,对于人脸属性篡改任务,我们想要给人脸加上刘海,可是却改变了发色或是背景,再例如,我们想要给人脸加上眼睛,结果竟然性别和年龄也改变了。下面是最新模型StarGANv2的结果: ?...可以看到多属性之间完全没有干扰,而且多样性也可以非常地对应上某个语义。而实现这一些的核心就是建立了如下一个层次结构: ?...能不能让对抗过程中的鉴别器可以看到这些标签本身就是不平衡的,从而来让翻译前后保持这些不平衡标签不变呢,比如这样: ? 也就是让鉴别器在鉴别金色刘海的同时,要让原始图片的性别和年龄也保持不变。...还真可以,这一个结构叫做Tag无关条件鉴别器,我个人觉得应该可以用来缓解很多对抗过程中数据集本身不平衡的问题,这几步结构上的改动带来的影响可以用一些对比结果表示: ?...妈妈式代码,详细注释,手把手教学,因为自己也相当幸运作为入门者的时候,看的是多模态的模型MUNIT(https://github.com/NVlabs/MUNIT)的代码,非常理解和进一步修改。

95810

要让 GAN 生成想要的样本,可控生成对抗网络可能会成为你的好帮手

通过实验,证实了 CGAN 可以有效地根据输入标签生成人脸图像样本。 材料和方法 CGAN 由三种神经网络结构组成,发生器 / 解码器,鉴别器和分类器 / 编码器。...结果和讨论 使用 CelebA 数据库生成多标签的名人人脸图片样本 通过想发生器输入多个标签,CGAN 可以生成多标签样本。CelebA 数据库由多个标签的图片构成。...从图中可以看出 CGAN 生成的人脸图片比条件 GAN 更契合输入标签。例如,使用 “Arched Eyebrow” 标签时,CGAN 生成的图片全部符合这个标签的特征,而条件 GAN 则有偏差。...结论 这篇论文提出了一种新的生成网络模型,即 CGAN,这种模型可以控制生成的图片样本。CGAN 包含三个模块,发生器 / 解码器,鉴别器和分类器 / 编码器。...通过实验,作者证实了 CGAN 可以生成具有多个标签的人脸图片。同时,这种控制有效性也可以对生成对抗网络的研究带来一些重要的提升。

2.8K20

GAN秒变肖像画!清华刘永进提出APDrawingGAN ,CVPR Oral(附微信小程序)

一幅的肖像画能很好地捕捉到人的个性和情感。 图1. 一些人脸照片和对应的艺术家画的肖像线条画。 然而,即使是受过专业训练的艺术家,完成一幅精致的肖像画也需要很长时间。...人脸照片来源于免费版权图片网站Pixabay。...鉴别器网络D用于判断输入图像是否是真实的,即是否是艺术家画的艺术肖像画。 其中全局鉴别器对整个图像进行检查,以判断肖像画的整体特征。而局部鉴别器对不同的局部面部区域进行检查,评估细节的质量。...局部鉴别器和全局鉴别器都采用PatchGAN的形式。...APDrawingGAN在没有对应艺术家肖像画的人脸照片上的测试结果。人脸照片来源于免费版权图片网站Pixabay。 图5.

1.1K60

人脸照片秒变艺术肖像画:清华大学提出APDrawingGAN CVPR 2019 oral paper

一幅的肖像画能很好地捕捉到人的个性和情感。然而,即使是受过专业训练的艺术家,完成一幅精致的肖像画也需要很长时间。 因此,自动地将人脸照片转换为高质量的艺术肖像画具有重要的艺术价值和实用价值。 ?...人脸照片来源于免费版权图片网站Pixabay。...鉴别器网络D用于判断输入图像是否是真实的,即是否是艺术家画的艺术肖像画。其中全局鉴别器对整个图像进行检查,以判断肖像画的整体特征。而局部鉴别器对不同的局部面部区域进行检查,评估细节的质量。...局部鉴别器和全局鉴别器都采用PatchGAN的形式。 针对艺术肖像线条画中的线条笔画风格,我们提出了一个全新的距离变换(DT)损失。...分别表示人脸照片和对应的艺术家肖像画。 ? 图4. APDrawingGAN在没有对应艺术家肖像画的人脸照片上的测试结果。人脸照片来源于免费版权图片网站Pixabay。 ? 图5.

77030

人脸照片秒变艺术肖像画:清华大学提出APDrawingGAN CVPR 2019 oral paper

一幅的肖像画能很好地捕捉到人的个性和情感。然而,即使是受过专业训练的艺术家,完成一幅精致的肖像画也需要很长时间。 因此,自动地将人脸照片转换为高质量的艺术肖像画具有重要的艺术价值和实用价值。 ?...人脸照片来源于免费版权图片网站Pixabay。...鉴别器网络D用于判断输入图像是否是真实的,即是否是艺术家画的艺术肖像画。其中全局鉴别器对整个图像进行检查,以判断肖像画的整体特征。而局部鉴别器对不同的局部面部区域进行检查,评估细节的质量。...局部鉴别器和全局鉴别器都采用PatchGAN的形式。 针对艺术肖像线条画中的线条笔画风格,我们提出了一个全新的距离变换(DT)损失。...分别表示人脸照片和对应的艺术家肖像画。 ? 图4. APDrawingGAN在没有对应艺术家肖像画的人脸照片上的测试结果。人脸照片来源于免费版权图片网站Pixabay。 ? 图5.

92640

人脸照片秒变艺术肖像画:清华大学提出APDrawingGAN

一幅的肖像画能很好地捕捉到人的个性和情感。然而,即使是受过专业训练的艺术家,完成一幅精致的肖像画也需要很长时间。 因此,自动地将人脸照片转换为高质量的艺术肖像画具有重要的艺术价值和实用价值。 ?...人脸照片来源于免费版权图片网站Pixabay。...鉴别器网络D用于判断输入图像是否是真实的,即是否是艺术家画的艺术肖像画。其中全局鉴别器对整个图像进行检查,以判断肖像画的整体特征。而局部鉴别器对不同的局部面部区域进行检查,评估细节的质量。...局部鉴别器和全局鉴别器都采用PatchGAN的形式。 针对艺术肖像线条画中的线条笔画风格,我们提出了一个全新的距离变换(DT)损失。...分别表示人脸照片和对应的艺术家肖像画。 ? ▲图4 APDrawingGAN在没有对应艺术家肖像画的人脸照片上的测试结果。人脸照片来源于免费版权图片网站Pixabay。 ?

2K20

“一网打尽”Deepfake等换脸图像,微软提出升级版鉴别技术Face X-Ray​

虽然研究者们为检测换脸图片提出了多种AI鉴别算法,但随着换脸算法的不断改造升级,鉴别算法很难跟上换脸算法的变化。 微软亚洲研究院团队近期提出的Face X-Ray算法或将改变这种局面。...它能鉴别图片真假,不但能告诉你图片有没有进行过换脸操作,而且还能告诉你换脸操作的边界在什么地方。”这篇论文已入选CVPR 2020。...因此,Face X-Ray 通过确定图像是否包含两种不同的噪声,就能判定一张人脸图像为合成图像的几率。...同时,使用分类器方法的前提是一定要收集大量假图片才能进行训练,但“假图片”本身可能已经对社会造成了危害。 Face X-Ray则把换脸鉴别技术推到了更高层次。...首先具有通用性,Face X-Ray背后的算法是“类自监督学习”的一种方法,“我们不需要这些(换脸图片)数据,也不用知道是哪个换脸算法,就能鉴别。”郭百宁称。

2.8K20

【GANs】将普通图片转换为梵高大作

超级逼真的人脸、动物和其他算法生成的图像令人惊叹不已,要知道,这项技术出现也不过短短几年。...生成式对抗网络技术人脸处理实例 这一领域相关度最高的研究是英伟达的 StyleGAN和谷歌的BigGAN。 要生成高质量的图片需要极高的计算能力,所以目前仍不是个可以轻松解决的问题。...《艺术化的神经网络算法》引领了这股潮流,该论文在事先测试的卷积网络中对图片进行内容和风格上的调整。...孪生生成式对抗网络(Siamese GAN)架构 孪生生成式对抗网络由生成器和鉴别器组成。图片输入生成器,输出编辑过的图片图片输入鉴别器,输出一个潜在矢量。...所以,如果能给生成器提供更多内容,比如编码后的“内容向量”,就能衍生出各种各样的其他用法,为更复杂的内容为导向的高清图片编辑开启无限可能,比如由一种图像转换成另一种图像、人脸、或动物等。

2.2K30

GeekPwn对抗样本挑战赛冠军队伍开源人脸识别攻击解决方案

比赛上半场中,赛会要求所有选手进行非定向图片(将飞行器识别为任何其他物体)、定向图片(将武器识别为特定的其他物品)以及亚马逊名人鉴别系统(将大赛主持人蒋昌建的照片识别为施瓦辛格)共计三种图像的对抗样本攻击...他们需要对照片做一些小的修改,以欺骗人脸识别系统,让它把照片中的人识别为施瓦辛格。比赛结束后,大家才知道该人脸识别系统是亚马逊名人鉴别系统。...由吴育昕与谢慈航组成的「IYSWIM」战队在限时 30 分钟的比赛中,首先于 21 分钟破解了亚马逊名人鉴别系统 Celebrity Recognition,并随后在定向图片的对抗样本攻击上破解成功,取得了领先...而对于人脸,我们首先收集 target 人物的 N 张人脸图片,运行模型得到 N 个 embedding vector v_i。...在相关的 GitHub repo 中,我们可以看到该团队的攻击代码和结果: 结果 比赛期间,吴育昕团队成功地攻击了 AWS 名人鉴别系统,让它把蒋昌建识别为了施瓦辛格。 ?

1.4K20

GAN能合成2k高清图了!还能手动改细节 | 论文+代码,英伟达出品

输入一张亲妈都认不出来的语义标注图—— 为你合成一张真实的人脸。...和街景类似,根据语义标注的人脸图像,我们可以选择组合人物的眼睛、眉毛和胡须等五官特征,还能在标注图上调整五官的大小。 无论是在街景中增加和减少物体,还是改变人脸的五官,都是通过一个可编辑的界面完成的。...网络架构 要生成高分辨率图片,直接用pix2pix的架构是肯定不行的。作者们在论文中说,他们试过了,训练不稳定,生成图片的质量也不如人意。 还是得在它的基础上,进行改造。...多尺度鉴别器 高分辨率图片不仅生成起来难,让计算机鉴别真假也难。 要鉴别高分辨率图像是真实的还是合成的,就需要一个感受野很大的鉴别器,也就是说,要么用很深的网络,要么用很大的卷积核。...于是这篇论文的作者们提出了一种新思路:多尺度鉴别器,也就是用3个鉴别器,来鉴别不同分辨率图片的真假。 如上图所示,这三个鉴别器D1、D2和D3有着相同的网络结构,但是在不同尺寸的图像上进行训练。

1.7K80

学界 | 人脸照片秒变艺术肖像画:清华大学提出APDrawingGAN CVPR 2019 oral paper

一幅的肖像画能很好地捕捉到人的个性和情感。然而,即使是受过专业训练的艺术家,完成一幅精致的肖像画也需要很长时间。...人脸照片来源于免费版权图片网站Pixabay。...鉴别器网络D用于判断输入图像是否是真实的,即是否是艺术家画的艺术肖像画。其中全局鉴别器对整个图像进行检查,以判断肖像画的整体特征。而局部鉴别器对不同的局部面部区域进行检查,评估细节的质量。...局部鉴别器和全局鉴别器都采用PatchGAN的形式。 针对艺术肖像线条画中的线条笔画风格,我们提出了一个全新的距离变换(DT)损失。...APDrawingGAN在没有对应艺术家肖像画的人脸照片上的测试结果。人脸照片来源于免费版权图片网站Pixabay。 图5.

92631

贾佳亚等提出卡通图与真实人脸转换模型,看女神突破次元壁长啥样

研究人员表示,通过在真实人脸和卡通人脸之间使用不成对的训练数据来生成人的卡通图片,是他们一直关注的领域。...但在此前,这项任务存在这巨大挑战: 真实和卡通人脸的结构属于两个不同的领域,外观相差很大。如果没有明确的对应关系,很难捕捉基本面部特征,并生成高质量卡通图片。...最后,通过局部和全局两种鉴别器,研究人员细化在卡通图和对应真实图像中的人脸特征。在这个阶段,强调了landmark的一致性,因此最后的生成生成结果逼真且有辨识度。...这两种鉴别器分工不同,并且各司其职。 研究人员表示,设计了就那landmark一致性损失,并将其匹配到全局鉴别器中,增强面部结构的相似性。...此外,人脸中的landmark可以用来定义局部鉴别器,进一步指导生成器在训练过程中多关注重要的面部特征。

2K10

智慧上云 | 腾讯云大数据人工智能产品48元起

微信图片_20191127175053.png 腾讯云11.11智慧上云活动(点击前往) 仅剩6天 你有可能错过的福利是: ① 人脸识别、文字识别OCR、语音识别等产品,开通即送免费送次数!...以人脸识别100万次的资源包为例,原价31元/万次,活动期间仅需15.5元/万次,打五折!打五折!省下来的钱四舍五入一个亿!! 人脸核身更是低至48元!...一顿下午茶的钱就够了,超实惠有木有~ 本次活动中,只要开发者开通接入,就送人脸识别10000次、文字识别OCR1000次免费调用次数 !...剧透一下:语音识别和人脸核身都有赠送一定的免费次数,赶紧登陆腾讯云官网控制台查收吧~ 大数据专场(点击前往) 0 (1).png 腾讯云 Elasticsearch Service(ES)是基于开源搜索引擎

6.9K62

多伦多大学开发反人脸识别系统,AI应用的伦理问题不能枉顾

大家知道,目前,人脸识别系统存在着争议。例如亚马逊此前因向执法机构出售人脸识别技术一事,登上了头条,遭到万人上书抨击。此外,国内外都有学校正在使用人脸识别摄像头,来监控学生。 ?...Aarabi在一份声明中表示:“随着人脸识别技术的不断发展,个人隐私是一个相当重要的问题。”而这种算法,正是可用于反人脸识别系统,有益于防御愈变愈强的人脸识别能力。 ?...工作原理:采用基于数据集的AI对抗训练 而多伦多研究人员的算法,则是在600张人脸的数据集上进行训练的,并提供一个可应用于任何图片的实时滤镜。...一个神经网络相当于产生数据输出的“生成器”,另一个相当于检测生成器所制造的假数据的“鉴别器”。也就是说,Aarabi和Bose的系统,使用生成器来获取信息、识别面部;而鉴别器则用来干扰面部识别。...反思后的反思,反人脸识别系统就一定安全么? 小编看到,多伦多大学研究人员,开发AI反人脸识别系统的出发点是的——考虑到人们对人工智能监视系统的担忧。

1.3K20

AI换脸鉴别率超99.6%,微软用技术应对虚假信息

FaceSwap 是一个学习重建脸部特征的深度学习算法,可以对给出的图片进行模型替换,人类对于此类换脸的识别率也是75%左右*。...Face2Face 则是用其他真实的人脸去替换原本的人脸,不涉及人脸的生成,对于它制造的脸,人类的识别率只有41%*。...多年来,微软亚洲研究院在人脸识别、图像生成等方向都拥有业界领先的算法和模型。...图1:微软亚洲研究院开发的模型分别提取蒙娜丽莎和赫本图片中的身份信息和属性信息进行合成 因此,微软亚洲研究院研发的换脸鉴别算法,基于 FaceForensics 数据库的测试结果均超越了人类肉眼的识别率以及此前业界的最好水平...与此同时,研究员还对人脸合成时难以处理的细节进行检查,如眼镜、牙齿、头发边缘、脸部轮廓,将它们作为算法关注的重点,从而提高识别准确率。

3K20
领券