人工智能系统如何实现知识的表示和推理?...在2021年世界人工智能大会上,由AI TIME组织的“图神经网络与认知智能前沿技术论坛”中,清华大学计算机系教授李涓子围绕“知识图谱与认知推理”做了主题报告,从问答系统的角度解释了AI如何实现认知推理...图 2:认知推理框架 以下是报告全文,AI科技评论做了不改变原意的整理。 1 认知 VS 知识 图 3:本体 认知是人获取并应用知识的过程,知识图谱是人表示客观世界认知的一种形式。...诺贝尔经济学奖获得者丹尼尔卡尼曼提出,在人的认知系统中存在系统 1 和系统 2,其中系统 2 进行较慢的逻辑化、序列化的推理。...3 可解释的认知推理 图 13:问答系统 我们团队从图灵测试出发,尝试在问答任务中探索可解释的认知推理技术。
制造业是中国工业化的源头,也是工业生产大国。任何一步的质量都可能影响生产过程的变化。表面缺陷不仅影响产品的美观和舒适性,还会对其性能产生不良影响。因此,制造商对产品的表面缺陷检测非常重视。...对于一些重要的按钮,尤其是停机和上下键安装错误,很容易导致严重事故,因此迫切需要使用人工智能检测手段,引入机器视觉检测,配合AI智能化算法,有效控制产品质量,从而消除或减少缺陷产品的产生,提高生产效率。...图片一、系统架构AI视觉检测系统主要通过光源和图像传感器(工业相机)获取产品的表面图像,利用图像处理算法提取图像的特征信息,然后根据特征信息对表面缺陷的定位、识别、分类等判定与统计,通过图像采集、图像校正...二、系统功能图像采集:500万像素8帧/秒定焦定高工业相机,由算法自动处理,面板高度不同带来的对焦可调整;图像预处理:预处理算法消除每个面板的长、宽、高均不相同,模板制作的好坏、视差的高低所带来的影响。...可扩展性:该系统可不仅仅局限于检修盒面板的检测,所有可以用模板匹配方法解决的问题,都可以无缝采用该软件系统。三、系统软件检验窗口:支持查看待检设备及模板图像、检验结果等,设置系统初始化配置。
因此,多卡并行被视为AI大模型推理的必然选择。 但现有的推理系统仍旧存在不少弊端。 比如需要用户对通信、内存等各部分协作进行手动管理,需要额外编译等……导致用户使用门槛居高不下。...为此,大规模并行AI训练系统Colossal-AI团队提出了大模型推理系统Energon-AI。...而当前的深度学习推理系统,主要面向多实例单设备以及单实例单设备的简单推理场景,忽视了AI大模型推理所需要的单实例多设备的挑战与机遇,Energon-AI系统正是为了解决这一痛点而生。...△模型参数的迅速增长[https://arxiv.org/abs/2111.14247] Energon-AI系统设计 面向AI大模型部署,Colossal-AI团队设计了单实例多设备推理系统Energon-AI...△Energon-AI超大模型推理系统示意图 Energon-AI系统设计分为三个层次,即运行时系统(Runtime)、分布式推理实例(Engine)以及前端服务系统(Serving): Runtime
那么让我们来看看人工智能的实施阶段,如果我们不知道人工智能采用的流程,我们将永远不知道问题出在哪里。...第五个话题,我要和大家分享的是带有AI推理引擎的AOI的硬件系统。...如左图所示,在POE阶段通常使用一个带RTX GPU卡的工业电脑把控制系统和推理系统放一起,因为非常简单,但是对于生产线中,AI推理与控制系统分开是非常重要的,因为你除了GPU卡外,还会要添加POE卡、...但是,你看到右边的图,我们可以使用Jetson Xavier系统作为推理引擎,与机器控制系统分离。...其次是灵活性,有时单个 RTX GPU 的性能无法达到客户的要求,但多 GPU 服务器解决方案的成本仍然很高,通过将多个带有以太网的 Jetson AGX Xavier 连接到 AI 机器,系统可以灵活性地扩展推理性能
数据在哪里,计算就应该在哪里,人工智能也正逐步向边缘迁移,将云上AI能力下沉到边缘节点,做到本地处理,打通AI的最后一公里。...比如园区里面随处可见的智能摄像头,进行人脸识别,车牌识别;家里面的智能电视,智能音响;工业领域里面的无人机进行电力线路智能巡检等等,边缘AI正在极大的提高了我们的生产生活效率。...联合推理: 针对边缘资源需求大,或边侧资源受限条件下,基于边云协同的能力,将推理任务卸载到云端,提升系统整体的推理性能。...2)LocalController:实现增量训练、联邦学习、联合推理特性的本地闭环管理。数据集和模型管理的本地控制,AI任务的状态同步等。...3)Lib:给应用提供边云协同AI特性接口,用户基于该Lib实现边云协同的训练、聚合、评估和推理。
跨模态感知推理表达 作为首位上台演讲的嘉宾,京东 AI 平台与研究部 AI 研究院常务副院长何晓冬博士带来了主题为《多模态智能:语言和视觉的感知、推理及表达》的演讲。...为了模拟推理,他们做了一个基于多重关注神经网络的系统,主要涵盖四个模型,语言模型、图像模型、多重关注模型、答案预测模型,他也进一步讲解了这些模型具体的功能以及整体推理过程。...聚焦 AI 安全热点,促进产业健康发展 聚焦 AI 安全热点,促进产业健康发展 第二位演讲嘉宾是国家工业信息安全发展研究中心副主任李新社,他主要谈到我国人工智能发展态势以及 AI 安全方面的问题...他表示,基于以上种种谈到的技术,我们探讨 AI 落地时,未来企业的发展应该是以机器智能为核心。而他也描绘了人工智能落地的过程——目标在哪里?数据在哪里?问题边界在哪里?特征在哪里?...她接下来提到三层因果关系,即 Counterfactuals,Intervention,Association,之后,她说明了因果模型能解决目前 AI 系统的局限性,最后,她详细描述了来自因果推理的七个启发
,但是,就目前来说,AI无论在商业还是工业,其实,都是还远非“智能”,确切的说,它一直走在发展的道路上。...因此,如果智能是机器学习人,而人的推理包括了演绎和归纳两种主要的方法。...由本地的PC进行本地推理,可以在APC上插入一个AI加速器,如华为的Atlas,Hypervisor确保Windows的AI处理任务与机器本身的实时控制任务可以高速通信,这样,就可以将本地推理(如对目标的识别...、视觉缺陷的判断、路径的调整)和执行(机器人或运动控制轴)紧密结合,实现真正的全架构工业AI与执行一体化。...自动化厂商机器学习优势在哪里?
“于是我们就在CTR预估上采用了这个系统。因为这个系统只要能提升1‰,就有很多收益;提升1% 的收益就更多。...它带来了图像识别、语音识别、NLP 等领域的长足进步,但是它的落地点在哪里?这就要问你的核心价值在哪里。一开始我们就很具体,就做客服。...PPT上显示的是三个简单的真实APP展示,展示了机器人本身是怎么来回答问题的;第二,在你没有问问题之前,不靠语音信号或者NLP输入信息,而是通过用户的行为轨迹自动判断当前可能的问题在哪里,系统会根据用户的行为轨迹做出时间训练模型进行分析...基于加强学习的对话系统 “其实在对话系统没有很多数据的情况下,一开始你很难做加强学习,有可能你就只能做一个规则技术。...推理和知识图谱 很多问题需要你做推理,如果A发生了,到B,B发生,回到C,你怎样把推理过程做好?今天,大家做了很多深度学习,比如说一个文本里面,A会导致B的发生,你把这个相关的答案找到。
AI世界排名:北清综合前三 AIRankings排名综合过去十年的研究,以及通用人工智能、计算机视觉、机器人、机器学习、自然语言处理、认知推理、多智能体系统与模拟这八个方向的表现。...其中,共列出人工智能最主要的六个领域:计算机视觉,自然语言处理,机器学习,认知推理,机器人以及多智能体系统,再加上通用人工智能和模拟两个领域,一共八个方向。...这个量又受两个因素影响: 第一是该文章发表在了哪里,反映在上式的权重系数Pi上。 第二是看文章有几位合著者(除去学生),比方说有K个合著者,那么每名合著者就会得到K^{-1}分。...中国科学院和哈尔滨工业大学分别位列第6和第7。 认知推理 这一项的前十也没有中国高校上榜。 在认知推理这个分支下我们和美国高校还是有一定差距。...多智能体系统 很遗憾,这一项中前十还是没有出现中国高校。 往后看一点的话,第13名是清华大学。从分数上来看,和第10名的差距并不大,杀入前十指日可待。
这些问题的唯一系统。 接下来,机器学习研究科学家 Robert Ness 谈论了「因果推理与(深度)概率规划」。 Ness 表示:「概率规划将是解决因果推理的关键。」...她谈到了语言的重要性,并表示语言是「生成任务的推理」。她认为:「我们人类执行的是即时推理,这将成为未来 AI 发展的关键和根本性挑战之一。」...Yejin Choi 指出:人类有能力信任新奇的事物,并进行奇怪的因果推理。她问道:「我们是否想要建立一个类人的系统?」...一种是直观形式,另一种是更高级的推理形式。 Kahneman 认为,System 1 包含了任意非符号事物,但这不意味着它是非符号系统。...她以内容推荐的 AI 系统为例,认为此类系统会使人们形成「更强大的、难以纠正的错误认知」。比如亚马逊和领英利用 AI 进行招聘,可能对女性候选者造成负面影响。
双方将发挥各自行业领域优势,在智慧家居、智慧零售、智能制造、工业物联网及机器人自动化、人工智能等方面开展深度合作。...12.12——腾讯AI Lab与农业专家组成的iGrow队获得荷兰瓦赫宁根大学(WUR)主办的国际人工智能温室种植大赛(Autonomous Greenhouse Challenge)“AI策略”单项第一名...IBM 2.02——IBM Watson 研究中心联合多家研究机构提出了人机推理网络 HuMaINs 架构,并聚焦于三个主要问题,即架构设计、包含安全性/隐私挑战的推理算法,以及应用领域/用例...12.12——宣布正式开源被誉为市面最强大物理仿真引擎的 PhysX,除了广泛应用于游戏特效的提升,该引擎还能为 AI 、机器人与计算机视觉技术、自动驾驶与高性能计算提供支持。...12.12——推出10纳米制程架构Sunny Cove 比特大陆 10.17——发布了首款低功耗边缘AI芯片BM1880。
莱迪思数据是 DeepDive 系统的商业化,使用 AI 推理引擎来获取非结构化的“黑暗”数据,并将其转化为结构化(且更可用)的信息。...莱迪思数据使用 AI 推理引擎来获取非结构化的“黑暗”数据,并将其转化为结构化(且更可用)的信息。有消息源称收购价格约2 亿美元。...“从黑暗数据中提取价值”的系统。...这一系统的应用会是多方面的,可用于国际警务及侦破如人口贩卖之类的案件、医学研究以及整合及分析古生物研究,还可以通过创建更有用的数据源来帮助训练 AI 系统。...我们的猜测是,这一定是围绕着AI的 。据知情人士称,Lattice已经“与其他科技公司探讨如何加强他们的 AI 助手”,包括亚马逊的 Alexa 和三星的 Bixby。
随着工业智能化的迅速发展,视觉 AI 缺陷检测技术已逐步成熟并得到广泛应用。...这些设备或系统处于不同的网络环境中,如生产网、办公网或者云平台等,需要构建一条信息通道打通各个设备和系统之间数据交互壁垒,进行相关数据的全面感知和采集,才能实现基于视觉 AI 缺陷检测和其他生产、业务数据的大数据分析...「云」设立在厂级信息中心或集团的总部,掌握总体管控的功能,还可根据实际生产需要,选用合适的模型进行集中训练,再将训练好的模型发布给 「边缘」进行就近推理,并接收其返回的推理结果进行存储、管理;「边缘」则设立在工厂内每条生产线上...图片EMQ 视觉 AI 缺陷检测解决方案针对工业领域视觉 AI 缺陷检测场景现状,EMQ 通过云原生技术以及云边协同架构提供了完整解决方案,实现对视觉 AI 缺陷检测图像流及海量工业设备数据在「产线-工厂...通过 EMQ 的这套方案可以构建完整、自循环的云边一体 AI 模型训练流程:边缘端的图像流实时汇聚、持久化到云端,云端 AI 及时进行模型训练并周期性优化算法模型发布到边缘端,同时实时汇聚、持久化新模型推理结果
近日,东京工业大学研究小组发布了一套格斗训练系统“FuturePose”,通过深度学习能预测 0.5 秒后对手的动作。...在这项研究中,研究人员开发了一套系统,通过从一个 RGB 相机捕获的图像中,从 30 fps(1帧= 1/30秒)图像中预测15帧后,即0.5秒后的动作,然后进行战斗训练。
在演讲中,他主要介绍了多模态 AI 近期的突破以及可信 AI 的挑战。目前人工智能正在从 “AI” 走向“可信赖 AI”。在全球范围内,可信赖 AI 也正逐渐成为学术界和工业界研究和关注的热点问题。...近年来,我们持续推动 “可信赖 AI” 的系统性建设。...模型内部,在 MRC 任务给出答案支撑事实;模型外部,在 QA 任务中给出答案的推理过程,通过推理过程自洽性提高准确率。...比如在工业界,要做一个可信赖 AI 的系统,我们从用户需求的调研和用户问题的提出开始,就要思考这是不是可信赖 AI 的问题,再到数据的收集标注,算法设计,开发上线,最后到产品交付,保持用户体验,从工业角度来讲...我们的研究方向在哪里,通过这张图我们试图去回答这个问题。这张图有两个维度,横向列出了可信赖 AI 的八个原则,纵向讲的是端到端有哪些环节,这个图里面有不同的颜色,它们是不同领域的论文。
推理层旨在赋予 AI 系统在推理时进行深度思考、问题解决和认知操作的能力,而不仅仅是快速的模式匹配。它能让 AI 系统像人一样深度思考和解决问题。...Datawhale 强化学习开源教程:https://github.com/datawhalechina/easy-rl AI 思维模式的转变:从系统 1 到系统 2 及新扩展法则 AI 正从简单的预训练反应...(“系统 1”)向更深层次的更加深思熟虑的推理(“系统 2”)转变。...面对复杂新问题,系统 2 的深度推理至关重要。它要求 AI 探索多种可能,评估结果并基于逻辑推理决策,以应对复杂问题。 从 o1 论文得到的最重要见解是,出现了一种新的扩展法则。...投资方向的分析:各层面的机遇与挑战 作为全球著名风投公司,红杉资本更关注哪里?资金被投入到哪里? 基础设施:基础设施层面是超大规模企业的优势领域,对风险投资家来说不好。
要知道,根据2016年的数据显示,一般18岁成年人的平均智商为97,6岁儿童的平均智商为55.5,相比之下谷歌人工智能系统的智商则为47.3,微软小冰是24.5。...另外,由于对人来说很难的题目对模型来说通常也很难,这表示该模型已经可以表现出一些人类认知系统中特有的重要属性。” Ken Forbus教授 实力这么强,这个模型到底是如何工作的呢?...据悉,该模型建立在一个名为CogSketch的“草图”(sketch)理解系统之上,该系统同样是Ken Forbus团队的研究成果。...CogSketch系统可以基于草图进行空间建模和逻辑推理,再配合此次最新研发的计算模型,因而能够在瑞文氏标准推理测试中脱颖而出。...当前,人工智能系统对图像和语音的识别能力已经相当出色,但对于语义和图像含义的理解、推理能力仍有待提高。
科大讯飞作为牵头单位,联合清华大学、中科院自动化所、北京大学、北京理工大学、中科院软件所、南京大学、电子科技大学、哈尔滨工业大学等超过30家科研院校和企业共同负责项目的研发与实施,科大讯飞执行总裁胡郁任项目的首席科学家...高耸的AI-MATHS AI-MATHS诞生于2014年,于去年5月宣布参加高考,今年2月以较高分通过中期评测。林辉介绍,AI-MATHS是通过综合逻辑推理平台来解题,而非学习储存题库。...“AI这次是系统阶段性成功公开测试,由于此次活动无法与高考同时同台进行,所以命名为模拟高考,但最关键的是整个过程是严格按照断网、断库、自然语言理解、综合复杂推理等严格流程进行的公开透明测试。”...林辉介绍,近1年多来,AI在复杂逻辑推理、直觉观察推理、计算机算法、深度学习上都进行了深入攻关,“AI是通过综合逻辑推理平台来解题,而非学习储存题库,因此在完全掐断题库、断网、无人干涉、仅有12台服务器...“想知道自己解题错在哪里”正是学霸君想要帮学生达到的重要目标之一。
领取专属 10元无门槛券
手把手带您无忧上云