首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Biopython:是否有一行程序可以从PDB文件中提取特定链的氨基酸序列?

是的,可以使用Biopython中的SeqIO模块来提取特定链的氨基酸序列。以下是一行程序的示例代码:

代码语言:txt
复制
from Bio import SeqIO

sequence = next(SeqIO.parse("your_pdb_file.pdb", "pdb")).seq

上述代码中,需要将"your_pdb_file.pdb"替换为你的PDB文件的实际路径。这行代码会解析PDB文件并提取第一个链的氨基酸序列。

Biopython是一个强大的生物信息学库,提供了许多用于处理生物信息学数据的工具和功能。它支持多种常用的生物信息学文件格式,并提供了一系列操作这些数据的方法。使用Biopython可以方便地处理PDB文件中的生物信息学数据。

Biopython的优势是其功能强大且易于使用。它提供了丰富的API和文档,适用于从初学者到专家的不同用户。Biopython还拥有活跃的社区支持,用户可以在社区中获得帮助和交流。

对于提取特定链的氨基酸序列的应用场景,可以包括蛋白质结构研究、药物设计、生物信息学分析等领域。

腾讯云的相关产品中,腾讯云容器服务TKE可以用于部署和管理生物信息学应用程序。您可以使用TKE轻松创建和管理容器集群,将您的生物信息学应用程序部署到云上,并灵活扩展资源以满足需求。详细信息请参考腾讯云容器服务TKE的官方文档:https://cloud.tencent.com/product/tke

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • AlphaFold3及其与AlphaFold2相比的改进

    蛋白质结构预测是生物化学中最重要的挑战之一。高精度的蛋白质结构对于药物发现至关重要。蛋白质结构预测始于20世纪50年代,随着计算方法和对蛋白质结构的认识不断增长。最初主要采用基于物理的方法和理论模型。当时的计算能力有限,这些模型往往难以成功地预测大多数蛋白质的结构。蛋白质结构模型的下一个发展阶段是同源建模,出现在20世纪70年代。这些模型依赖于同源序列具有相似结构的原理。通过将目标序列与已知结构的模板序列进行多序列比对,首次成功地确定了以前未解决的序列的结构。然而,这些模型的分辨率仍然有限。20世纪80年代出现了从头开始的方法,带来了下一个分辨率提升。这些方法应用了基于物理的技术和优化算法。结合计算技术的进步,这导致了蛋白质结构预测的显著改进。为了对所有这些新方法进行基准测试,从90年代初开始了蛋白质结构预测技术评估的关键阶段(CASP)系列活动。近年来,机器学习和深度学习技术已经越来越多地集成到蛋白质结构预测方法中,尤其是自2007年以来使用长短期记忆(LSTM)以来。

    01

    ProGen:蛋白质生成语言模型

    今天给大家介绍的是一项由硅谷Salesforce Research的Ali Madani等人和斯坦福的Possu Huang教授课题组合作的工作,他们在这篇论文中提出的一种蛋白生成语言模型ProGen。作者将蛋白质工程视为无监督序列生成问题,利用大约2.8亿个的蛋白质序列对12亿个参数进行训练,且要求这些蛋白质序列是基于分类和关键字标签的,如分子功能和细胞成分,这为ProGen模型提供了前所未有的进化序列多样性,并允许它进行基于一级序列相似性、二级结构准确率和构像能量的细粒度控制生成。根据NLP指标,ProGen模型表现出良好的性能,且随着氨基酸上下文和条件标签的增多,模型效果会进一步提升。ProGen也适用于未见的蛋白家族,若进行微调,模型效果更好。

    06

    Nat. Biotechnol. | 通过全新设计的蛋白质激发功能

    今天为大家介绍的是来自Po-Ssu Huang团队的一篇论文。蛋白质中的信息流是从序列到结构再到功能,每一步都是由前一步驱动的。蛋白质设计的基础是反转这一过程:指定一个期望的功能,设计执行这个功能的结构,并找到一个能够折叠成这个结构的序列。这个“中心法则”几乎是所有全新蛋白质设计工作的基础。我们完成这些任务的能力依赖于我们对蛋白质折叠和功能的理解,以及我们将这种理解捕捉到计算方法中的能力。近年来,深度学习衍生的方法在高效和准确的结构建模和成功设计的丰富化方面使我们能够超越蛋白质结构的设计,向功能蛋白质的设计前进。

    01

    Science | ProteinMPNN : 基于深度学习的蛋白序列设计

    本文介绍华盛顿大学的蛋白质设计科学家D. Baker在2022年9月15发表在Science研究工作Robust deep learning–based protein sequence design using ProteinMPNN。研究团队开发了一种基于深度学习的蛋白质序列设计方法 ProteinMPNN,它在计算机和实验测试中均具有出色的性能。天然蛋白质骨架上,ProteinMPNN 的序列恢复率为 52.4%,而 Rosetta 为 32.9%。不同位置的氨基酸序列可以在单链或多链之间偶联,从而能够应用于当前广泛的蛋白质设计任务。研究团队使用 X-ray晶体学、cryoEM 和功能研究通过挽救以前失败的蛋白质单体设计(使用 Rosetta 或 AlphaFold设计的蛋白质单体、环状同源寡聚体、四面体纳米颗粒和靶结合蛋白)证明了 ProteinMPNN 的广泛实用性和高精度,

    01

    J. Chem. Inf. Model. | 基于序列和基于结构的蛋白质-配体相互作用机器学习方法

    开发新药既昂贵又耗时。准确预测药物和靶标之间的相互作用可能会改变药物的发现方式。基于机器学习的蛋白质-配体相互作用预测已经显示出巨大的潜力。本文重点对基于序列和基于结构的蛋白质-配体相互作用机器学习方法进行了总结。因此,本文首先概述了该领域应用的数据集,以及用于表示蛋白质和配体的各种方法。然后,利用基于序列和基于结构的分类标准对经典机器学习模型和深度学习模型进行分类和总结,用于蛋白质-配体相互作用的研究。此外,还提出了这些模型的评价方法和可解释性。此外,深入探讨了蛋白质-配体相互作用模型在药物研究中的各种应用。最后,讨论了该领域目前面临的挑战和未来的发展方向。

    01

    Nat. Commun. | 用于蛋白质设计的深度无监督语言模型ProtGPT2

    本文介绍一篇拜罗伊特大学2022年7月发表在nature communications的《ProtGPT2 is a deep unsupervised language model for protein design》。蛋白质设计在自然环境和生物医学中发挥着重要作用,旨在为特定用途设计全新的蛋白质。受到近期Transformer架构在文本生成领域成功的启发,作者提出ProtGPT2,一种在蛋白质空间上训练的语言模型,用于生成遵循自然序列原则的全新蛋白质序列。ProtGPT2生成的蛋白质显示出天然氨基酸倾向,而无序预测表明,88%的ProtGPT2生成的蛋白质是球状的,与自然序列一致。蛋白质数据库中的敏感序列搜索表明,ProtGPT2序列与自然序列有着远亲关系,相似网络进一步证明,ProtGPT2是对蛋白质空间中未探索区域的采样。ProtGPT2生成的序列在探索蛋白质空间的未知区域时,保留了天然蛋白质的关键特征。

    01

    Bioinformatics | XRRpred:根据蛋白质序列精确预测晶体结构质量

    今天给大家介绍的是Sina Ghadermarzi等人发表在Bioinformatics上的一篇文章“XRRpred: accurate predictor of crystal structure quality from protein sequence”。目前,用x射线晶体学产生的蛋白质结构的质量差异很大。作者提出了XRRpred预测模型直接根据蛋白质序列预测分辨率和R-free(结构质量的两种度量)并提供了web服务器,允许批量预测并提供结果的信息可视化。作者证明了XRRpred的预测正确地模拟了分辨率和R-free之间的关系,并再现了蛋白质结构类别之间的结构质量关系,并为常见的同一蛋白质的结构集群的最佳结构质量提供了线索。测试表明,XRRpred显著优于其他间接方法来预测结构质量,例如基于结晶倾向的预测。

    03

    Bioinformatics | XRRpred:根据蛋白质序列精确预测晶体结构质量

    今天给大家介绍的是Sina Ghadermarzi等人发表在Bioinformatics上的一篇文章“XRRpred: accurate predictor of crystal structure quality from protein sequence”。目前,用x射线晶体学产生的蛋白质结构的质量差异很大。作者提出了XRRpred预测模型直接根据蛋白质序列预测分辨率和R-free(结构质量的两种度量)并提供了web服务器,允许批量预测并提供结果的信息可视化。作者证明了XRRpred的预测正确地模拟了分辨率和R-free之间的关系,并再现了蛋白质结构类别之间的结构质量关系,并为常见的同一蛋白质的结构集群的最佳结构质量提供了线索。测试表明,XRRpred显著优于其他间接方法来预测结构质量,例如基于结晶倾向的预测。

    01

    BIB | APPTEST:深度学习方法与传统的NMR结构测定方法相结合,预测肽的三级结构

    今天给大家介绍都柏林大学的Patrick Brendan Timmons 和Chandralal M. Hewage在Briefings in Bioinformatics上发表的文章“APPTEST is a novel protocol for the automatic prediction of peptide tertiary structures”充分了解肽的三级结构对于理解其功能及其与生物靶点的相互作用很重要。作者在文章中报告了一种新的算法APPTEST,它采用神经网络结构和模拟退火方法从一级序列预测肽的三级结构。APPTEST适用于5-40个天然氨基酸的线性肽和环状肽,并且它计算效率很高,可以在几分钟内返回预测的结构。作者团队对一组356个测试肽上进行了附加性能评估;每个肽的最佳结构偏离实验确定的主干构象平均为1.9 Å,97%的目标序列预测为天然或接近天然结构。在短、长和循环肽的基准数据集中,与PEP-FOLD、PEPStRMOD和PepLook的性能比较表明,APPTEST产生的结构平均比现有方法更符合原生结构。

    01
    领券