首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

干货 | 数据分析实战案例——用户行为预测

pandas在分析结构化数据方面非常的流行和强大,但是它最大的限制就在于设计时没有考虑到可伸缩性。...这就是Dask DataFrame API发挥作用的地方:通过为pandas提供一个包装器,可以智能的将巨大的DataFrame分隔成更小的片段,并将它们分散到多个worker(帧)中,并存储在磁盘中而不是...Dask DataFrame会被分割成多个部门,每个部分称之为一个分区,每个分区都是一个相对较小的 DataFrame,可以分配给任意的worker,并在需要复制时维护其完整数据。...接口读取的数据,无法直接用.isnull()等pandas常用函数筛查缺失值 data.isnull() Dask DataFrame Structure : .dataframe tbody tr...用户行为统计表 describe = df.loc[:,["U_Id","Be_type"]] ids = pd.DataFrame(np.zeros(len(set(list(df["U_Id"

3.3K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    猫头虎 分享:Python库 Dask 的简介、安装、用法详解入门教程

    Dask DataFrame:与 pandas 类似,处理无法完全载入内存的大型数据集。 Dask Delayed:允许将 Python 函数并行化,适合灵活的任务调度。...以下是常见场景下 Dask 的用法: 3.1 使用 Dask DataFrame 替代 pandas 当数据集过大时,Dask DataFrame 能够自动分区并并行处理数据,非常方便。...import dask.dataframe as dd # 读取一个超大 CSV 文件 df = dd.read_csv('large_file.csv') # 进行操作,例如 groupby 和...sum result = df.groupby('category').amount.sum().compute() # 注意:一定要用 .compute() 才会执行计算!...总结与表格概览 功能 Dask 替代方案 主要优势 Dask DataFrame pandas 处理无法装载到内存的大型数据集 Dask Array NumPy 处理超大数组并行计算 Dask Delayed

    30410

    谁是PythonRJulia数据处理工具库中的最强武器?

    Python/R/Julia中的数据处理工具多如牛毛「如pandas、spark、DataFrames.jl、polars、dask、dplyr、data.table、datatable等等」,如何根据项目需求挑选趁手的武器...7种Python工具 dask pandas datatable cuDF Polars Arrow Modin 2种R工具 data.table dplyr 1种Julia工具...DataFrames.jl 3种其它工具 spark ClickHouse duckdb 评估方法 分别测试以上工具在在0.5GB、5GB、50GB数据量下执行groupby、join的效率...、Julia中的DataFrame.jl等在groupby时是一个不错的选择,性能超越常用的pandas,详细, 0.5GB数据 groupby 5GB数据 groupby 50GB数据 groupby...data.table在join时表现不俗,详细, 0.5GB数据 join 5GB数据 join 50GB数据 join 小结 R中的data.table、Python中的Polars、Julia中的DataFrame.jl

    1.8K40

    安利一个Python大数据分析神器!

    官方:https://dask.org/ Dask支持Pandas的DataFrame和NumpyArray的数据结构,并且既可在本地计算机上运行,也可以扩展到在集群上运行。...Dask的使用是非常清晰的,如果你使用NumPy数组,就从Dask数组开始,如果你使用Pandas DataFrame,就从Dask DataFrame开始,依此类推。...之所以被叫做delayed是因为,它没有立即计算出结果,而是将要作为任务计算的结果记录在一个图形中,稍后将在并行硬件上运行。...有时问题用已有的dask.array或dask.dataframe可能都不适合,在这些情况下,我们可以使用更简单的dask.delayed界面并行化自定义算法。例如下面这个例子。...、add和sum都还没有发生,而是生成一个计算的任务图交给了total。

    1.6K20

    pandas.DataFrame()入门

    pandas.DataFrame()函数​​pandas.DataFrame()​​函数是创建和初始化一个空的​​DataFrame​​对象的方法。...()创建DataFrame对象df = pd.DataFrame(data)# 打印DataFrame对象print(df)上述代码将创建一个包含姓名、年龄和城市信息的​​DataFrame​​对象。​​...= df.groupby('Product').agg({'Quantity': 'sum', 'Price': 'sum'})print(product_sales)# 计算每个产品的平均价格product_sales...接下来,我们使用​​groupby()​​方法对产品进行分组,并使用​​agg()​​方法计算每个产品的销售数量和总销售额。...Dask:Dask是一个灵活的并行计算库,使用类似于pandas.DataFrame的接口来处理分布式数据集。Dask可以运行在单台机器上,也可以部署在集群上进行大规模数据处理。

    28010
    领券