首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pandas | 详解DataFrame中的apply与applymap方法

今天这篇文章我们来聊聊dataframe中的广播机制,以及apply函数的使用方法。 dataframe广播 广播机制我们其实并不陌生, 我们在之前介绍numpy的专题文章当中曾经介绍过广播。...我们只需要在apply方法当中传入我们想要应用在DataFrame上的方法即可,也就是说它接受的参数是一个函数,这是一个很典型的函数式编程的应用。...比如我们可以这样对DataFrame当中的某一行以及某一列应用平方这个方法。 ? 另外,apply中函数的作用域并不只局限在元素,我们也可以写出作用在一行或者是一列上的函数。...最后我们来介绍一下applymap,它是元素级的map,我们可以用它来操作DataFrame中的每一个元素。比如我们可以用它来转换DataFrame当中数据的格式。 ?...这里要注意,如果将上面代码中的applymap改成apply是会报错的。报错的原因也很简单,因为apply方法的作用域不是元素而是Series,Series并不支持这样的操作。

3K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    python中 apply()函数的用法

    函数格式为:apply(func,*args,**kwargs)用途:当一个函数的参数存在于一个元组或者一个字典中时,用来间接的调用这个函数,并肩元组或者字典中的参数按照顺序传递给参数解析:args是一个包含按照函数所需参数传递的位置参数的一个元组...,而其中args如果不传递,kwargs需要传递,则必须在args的位置留空apply的返回值就是函数func函数的返回值def function(a,b): print(a,b) apply...,('cai',),{'b':'caiquan'}) apply(function,(),{'a':'caiquan','b':'Tom'}) #--使用 apply 函数调用基类的构造函数...函数默认的是axis为 axis=0data= [ [1,2,3], [5,4,1], [3,2,2]]df = pd.DataFrame(data,columns=['A','B',...中apply函数默认的是axis=0,取的是列数 A B C0 0.0 0.0 1.01 1.0 1.0 0.02 0.5 0.0

    13.5K30

    Pandas中第二好用的函数 | 优雅的apply

    这是Python数据分析实战基础的第四篇内容,也是基础系列的最后一篇,接下来就进入实战系列了。本文主要讲的是Pandas中第二好用的函数——apply。 为什么说第二好用呢?...做人嘛,最重要的就是谦虚,做函数也是一样的,而apply就是这样一个优雅而谦虚的函数。...Apply初体验 apply函数,因为她总是和分组函数一起出现,所以在江湖得了个“groupby伴侣”的称号。...我们指定“综合成绩”列,然后把max函数直接传入apply参数内,返回了对应分组内成绩的最大值。有一些常见函数,如max、min、len等函数可以直接传入apply。...答案是直接索引,把他看作是一个DataFrame格式的表,要选取第3行的所有值,包括城市和销售额,这里用iloc索引,很简单的一行代码: ?

    1.1K31

    apply、call、bind函数的区别

    apply、call、bind函数的区别一、前言大多数人都知道,使用apply、call、bind可以调用函数,并改变函数中this的指向。做一个简单记录,免得以后忘记了。...二、apply使用:函数.apply(obj, arg[])参数:第一个参数为函数中this指向的对象第二个参数是函数中原本的参数,由数组进行封装JAVASCRIPTvar user = { username...(other, [other.age]);三、call使用:函数.call(obj, args...)参数:第一个参数为函数中this指向的对象,后面的参数跟着原本的函数就好,加在后面就行JAVASCRIPTvar...call、bind他们的异同点相同点:都可以改变函数中this的指向,且都将作为第一个参数进行使用不同点(传参方面)apply:在传入改变this的对象之后,将原来的函数参数,打包成一个数组进行传参call...(调用方面)apply、call:函数.apply()或者函数.call(),即可发起调用bind:先返回一个改变指向的函数,再通过这个函数进行调用我是半月,祝你幸福!!!

    9410

    Python数据分析中第二好用的函数 | apply

    本文主要讲一下Pandas中第二好用的函数——apply。 为什么说第二好用呢?做人嘛,最重要的就是谦虚,做函数也是一样的,而apply就是这样一个优雅而谦虚的函数。...Apply初体验 apply函数,因为她总是和分组函数一起出现,所以在江湖得了个“groupby伴侣”的称号。...我们指定“综合成绩”列,然后把max函数直接传入apply参数内,返回了对应分组内成绩的最大值。有一些常见函数,如max、min、len等函数可以直接传入apply。...结合我们的目标,揉面是按省份进行分组,得到每个省各个城市和对应销售额的面团;DIY包子是在每个面团中取其第三名的城市和销售额字段。 第一步分组非常简单,按省份分组即可。...答案是直接索引,把他看作是一个DataFrame格式的表,要选取第3行的所有值,包括城市和销售额,这里用iloc索引,很简单的一行代码: ?

    1.3K20

    Pandas的Apply函数——Pandas中最好用的函数

    ,但是我认为其中最好用的函数是下面这个函数: apply函数 apply函数是`pandas`里面所有函数中自由度最高的函数。...该函数如下: DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds) 该函数最有用的是第一个参数...这个函数需要自己实现,函数的传入参数根据axis来定,比如axis = 1,就会把一行数据作为Series的数据结构传入给自己实现的函数中,我们在函数中实现对Series不同属性之间的计算,返回一个结果...,则apply函数会自动遍历每一行DataFrame的数据,最后将所有结果组合成一个Series数据结构并返回。...函数多了两个参数,这样我们在使用apply函数的时候要自己传递参数,代码中显示的三种传递方式都行。

    1K11

    R语言中的apply函数族

    但是,由于在R语言中apply函数与其他语言循环体的处理思路是完全不一样的,所以apply函数族一直是初学者玩不转的一类核心函数。...apply函数 apply函数是最常用的代替for循环的函数。...apply函数可以对矩阵、数据框、数组(二维、多维),按行或列进行循环计算,对子元素进行迭代,并把子元素以参数传递的形式给自定义的FUN函数中,并返回计算结果。...也可以是自己编写的函数。 ... :FUN中的额外参数。 现在假设我们需要对一个矩阵的每一行求和,那么用apply怎么实现呢?...下面以计算list中的每个元素对应数据的分位数为例,展示该函数的特性。 # 构建一个list数据集x,分别包括a,b,c 三个KEY值。

    4.5K52
    领券