首页
学习
活动
专区
圈层
工具
发布
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas DataFrame 数据合并、连接

    merge 通过键拼接列 pandas提供了一个类似于关系数据库的连接(join)操作的方法merage,可以根据一个或多个键将不同DataFrame中的行连接起来 语法如下: merge(left...在此典型情况下,结果集的行数并没有增加,列数则为两个元数据的列数和减去连接键的数量。...on : 指的是用于连接的列索引名称。...,使用参数left_index=true,right_index=True (最好使用join) join 拼接列,主要用于索引上的合并 join方法提供了一个简便的方法用于将两个DataFrame中的不同的列索引合并成为一个...2.可以连接多个DataFrame 3.可以连接除索引外的其他列 4.连接方式用参数how控制 5.通过lsuffix='', rsuffix='' 区分相同列名的列 concat 可以沿着一条轴将多个对象堆叠到一起

    4.1K50

    DataFrame一列拆成多列以及一行拆成多行

    文章目录 DataFrame一列拆成多列 DataFrame一行拆成多行 分割需求 简要流程 详细说明 0. 初始数据 1. 使用split拆分 2. 使用stack行转列 3....使用join合并数据 DataFrame一列拆成多列 读取数据 ? 将City列转成多列(以‘|’为分隔符) 这里使用匿名函数lambda来讲City列拆成两列。 ?...DataFrame一行拆成多行 分割需求 在处理数据过程中,会需要将一条数据拆分为多条,比如:a|b|c拆分为a、b、c,并结合其他数据显示为三条数据。...简要流程 将需要拆分的数据使用split拆分,并通过expand功能分成多列 将拆分后的多列数据使用stack进行列转行操作,合并成一列 将生成的复合索引重新进行reset_index保留原始的索引,并命名为...C 将处理后的数据和原始DataFrame进行join操作,默认使用的是索引进行连接 详细说明 0.

    7.9K10

    Pandas DataFrame 中的自连接和交叉连接

    SQL语句提供了很多种JOINS 的类型: 内连接 外连接 全连接 自连接 交叉连接 在本文将重点介绍自连接和交叉连接以及如何在 Pandas DataFrame 中进行操作。...自连接 顾名思义,自连接是将 DataFrame 连接到自己的连接。也就是说连接的左边和右边都是同一个DataFrame 。自连接通常用于查询分层数据集或比较同一 DataFrame 中的行。...示例 1:查询分层 DataFrame 假设有以下表,它表示了一家公司的组织结构。manager_id 列引用employee_id 列,表示员工向哪个经理汇报。...要获取员工向谁汇报的姓名,可以使用自连接查询表。 我们首先将创建一个新的名为 df_managers的 DataFrame,然后join自己。...总结 在本文中,介绍了如何在Pandas中使用连接的操作,以及它们是如何在 Pandas DataFrame 中执行的。这是一篇非常简单的入门文章,希望在你处理数据的时候有所帮助。

    5.5K20

    【如何在 Pandas DataFrame 中插入一列】

    为什么要解决在Pandas DataFrame中插入一列的问题? Pandas DataFrame是一种二维表格数据结构,由行和列组成,类似于Excel中的表格。...解决在DataFrame中插入一列的问题是学习和使用Pandas的必要步骤,也是提高数据处理和分析能力的关键所在。 在 Pandas DataFrame 中插入一个新列。...示例 1:插入新列作为第一列 以下代码显示了如何插入一个新列作为现有 DataFrame 的第一列: import pandas as pd #create DataFrame df = pd.DataFrame...axis=1) print(result) 这里我们使用concat函数将两个DataFrame沿着列方向连接,创建了一个新的DataFrame。...总结: 在Pandas DataFrame中插入一列是数据处理和分析的重要操作之一。通过本文的介绍,我们学会了使用Pandas库在DataFrame中插入新的列。

    4.3K10

    pandas按行按列遍历Dataframe的几种方式

    遍历数据有以下三种方法: 简单对上面三种方法进行说明: iterrows(): 按行遍历,将DataFrame的每一行迭代为(index, Series)对,可以通过row[name]对元素进行访问。...itertuples(): 按行遍历,将DataFrame的每一行迭代为元祖,可以通过row[name]对元素进行访问,比iterrows()效率高。...iteritems():按列遍历,将DataFrame的每一列迭代为(列名, Series)对,可以通过row[index]对元素进行访问。...import pandas as pd inp = [{‘c1’:10, ‘c2’:100}, {‘c1’:11, ‘c2’:110}, {‘c1’:12, ‘c2’:123}] df = pd.DataFrame..., ‘name’) for row in df.itertuples(): print(getattr(row, ‘c1’), getattr(row, ‘c2’)) # 输出每一行 1 2 按列遍历

    9.3K20
    领券