首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Hibernate,单表继承和使用来自超类的字段作为鉴别器列

关于Hibernate,它是一个开源的对象关系映射(ORM)框架,可以将Java对象映射到关系型数据库中的表。Hibernate提供了一种简单的方式来实现持久化操作,使得开发人员可以专注于业务逻辑而不需要关注底层的数据库操作。

单表继承是Hibernate中的一种继承策略,它将所有的子类对象都映射到同一张表中,通过在表中添加一个鉴别器列来区分不同的子类对象。使用来自超类的字段作为鉴别器列是单表继承中的一种常见做法,可以避免在表中添加额外的鉴别器列,同时也可以保证数据的一致性。

在单表继承中,可以使用以下方式来定义鉴别器列:

代码语言:java
复制
@Entity
@Table(name = "employee")
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name = "employee_type", discriminatorType = DiscriminatorType.STRING)
public class Employee {
    @Id
    @GeneratedValue(strategy = GenerationType.IDENTITY)
    private Long id;

    @Column(name = "employee_type")
    private String employeeType;

    // 其他属性和方法
}

在上述代码中,使用了@DiscriminatorColumn注解来定义鉴别器列,并指定了鉴别器列的名称和类型。同时,在子类中不需要再次定义鉴别器列,Hibernate会自动使用超类中定义的鉴别器列来区分不同的子类对象。

总之,Hibernate是一个强大的ORM框架,可以帮助开发人员更加高效地实现数据持久化操作。单表继承是Hibernate中的一种继承策略,可以将子类对象映射到同一张表中,通过使用来自超类的字段作为鉴别器列来区分不同的子类对象。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • One-Shot Image-to-Image Translation viaPart-Global Learning With aMulti-Adversarial Framework

    众所周知,人类可以从几个有限的图像样本中有效地学习和识别物体。然而,对于现有的主流深度神经网络来说,仅从少数图像中学习仍然是一个巨大的挑战。受人类思维中类比推理的启发,一种可行的策略是“翻译”丰富的源域的丰富图像,以用不足的图像数据丰富相关但不同的目标域。为了实现这一目标,我们提出了一种新的、有效的基于部分全局学习的多对抗性框架(MA),该框架实现了一次跨域图像到图像的翻译。具体而言,我们首先设计了一个部分全局对抗性训练方案,为特征提取提供了一种有效的方法,并防止鉴别器被过度拟合。然后,采用多对抗机制来增强图像到图像的翻译能力,以挖掘高级语义表示。此外,还提出了一种平衡对抗性损失函数,旨在平衡训练数据,稳定训练过程。大量实验表明,所提出的方法可以在两个极不平衡的图像域之间的各种数据集上获得令人印象深刻的结果,并且在一次图像到图像的转换上优于最先进的方法。

    02

    Multi-source Domain Adaptation for Semantic Segmentation

    用于语义分割的实域自适应仿真已被积极研究用于自动驾驶等各种应用。现有的方法主要集中在单个源设置上,无法轻松处理具有不同分布的多个源的更实际的场景。在本文中,我们建议研究用于语义分割的多源域自适应。具体来说,我们设计了一个新的框架,称为多源对抗域聚合网络(MADAN),它可以以端到端的方式进行训练。首先,我们为每个源生成一个具有动态语义一致性的自适应域,同时在像素级循环上一致地对准目标。其次,我们提出了子域聚合鉴别器和跨域循环鉴别器,以使不同的适应域更紧密地聚合。最后,在训练分割网络的同时,在聚合域和目标域之间进行特征级对齐。从合成的GTA和SYNTHIA到真实的城市景观和BDDS数据集的大量实验表明,所提出的MADAN模型优于最先进的方法。

    01

    Every Pixel Matters: Center-aware Feature Alignment for Domain Adaptive

    域适配目标检测旨在将目标检测器适配到未知的域,新的域可能会遇到各种各样的外观变化,包括外观,视角或者背景。现存的大多数方法在图像级或者实例级上采用图像对齐的方法。然而,在全局特征上的图像对齐可能会使得前景和背景像素同时发生缠绕。和现有的方法所不同的是,我们提出了一个域适配框架提前预测目标和中心度来对每个像素都负责。特别地,提出的方法通过给背景像素更多的关注来进行中心可知的对齐,因此比以前的适配方法效果更好。在大量适配设置的大量实验上证明了我们所提出方法的有效性,并且展示了比SOTA算法更佳的表现。

    01

    Progressive Domain Adaptation for Object Detection

    最近用于对象检测的深度学习方法依赖于大量的边界框注释。收集这些注释既费力又昂贵,但当对来自不同分布的图像进行测试时,监督模型并不能很好地推广。领域自适应通过使现有标签适应目标测试数据来提供解决方案。然而,领域之间的巨大差距可能会使适应成为一项具有挑战性的任务,从而导致不稳定的训练过程和次优结果。在本文中,我们建议用一个中间域来弥合领域差距,并逐步解决更容易的适应子任务。该中间域是通过平移源图像以模仿目标域中的图像来构建的。为了解决领域转移问题,我们采用对抗性学习来在特征级别对齐分布。此外,应用加权任务损失来处理中间域中的不平衡图像质量。 实验结果表明,我们的方法在目标域上的性能优于最先进的方法。

    03

    Learning to Adapt Structured Output Space for Semantic Segmentation

    对语义分割来讲基于卷积神经网络的方法,依赖像素级ground-truth标记,但是对未知领域可能泛化效果并不好。因为标记过程是沉闷和耗时的,开发将源ground truth标记到目标域引起了很大的关注。本文我们提出一种对抗训练方法在语义分割的内容中进行域适配。考虑语义分割作为结构输出包含源域和目标域的空间相似性,在输出空间中,我们采用对抗训练。为了进一步增强适配模型,我们构建一个多层对抗网络,在不同特征级别上有效的执行输出空间域适配。一系列的实验和消融研究在不同域适配下进行,包括合成到真实和跨城市场景。我们表明提出的方法在精度是视觉质量方面,超过了现有的最先进的方法。

    02
    领券