Please report this to the AutoGraph team.Please report this to the AutoGraph team.因此,我们在不注释扁平化和致密层的同时获得此错误:
WARNING:tensorflow:Entity <bound method fakeLayer.call of <__main__.fakeLayerPlease report this to the AutoGraph team.Please report this to the Au
每次运行tf.keras.Sequential().predict_on_batch时都会收到以下消息: WARNING: AutoGraph could not transform <bound method__call__ of <tensorflow.python.keras.engine.sequential.Sequential object at 0x000001F927581348>> andWhen filing the bug, set the verbosity to 10 (on Linux,
): print(result)
print(tf.keras.backend.get_valuePlease report this to the AutoGraph team.When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach
myModel.add(Dropout(0.2))
#myModel.add(Dropout(0.2))
ls = tf.keras.losses.categorical_crossentropyW1014 21:02:57.125363Please report this to the AutoGraph
_______________________________________________________________________ WARNING:tensorflow:AutoGraphWhen filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach theWARNING:tensorflow:AutoGraph could not transform <function
我尝试添加一个tf.keras.layers.Input层,这会导致同样的错误。任何关于如何成功地为USEM2构建微调顺序模型的建议都将受到极大的赞赏。(32, activation='relu')
model = tf.keras.models.SequentialPlease report this to the AutoGraph team.Please
我试图通过一些调整来实现“注意就是你所需要的一切”的时间序列,但是我得到了这个错误:
import tensorflow as tf
class Attention(tf.keras.layers.Layer):self.dense1 = tf.keras.layers.Dense(dv, activation='relu