生成自相关和偏自相关图 进行Dickey-Fuller测试 对时间序列进行对数变换,并再次运行上述两个过程,以确定平稳性的变化(如果有的话) 首先,这是时间序列图: 据观察,波动性(或消费从一天到下一天的变化)非常高...数据处理 首先,导入相关库并执行数据处理 LSTM生成和预测 模型训练超过100期,并生成预测。...以下是预测消费与实际消费量的关系图: 有趣的是,当在原始数据上生成预测(未转换为对数格式)时,会产生以下训练和测试误差: 在每天平均消耗4043千瓦的情况下,测试的均方误差占总日均消耗量的近20%,并且与对数数据产生的误差相比非常高...10天 50天 我们可以看到测试误差在10天和50天期间显着降低,并且考虑到LSTM模型在预测时考虑了更多的历史数据,消耗的波动性得到了更好的预测。...被证明在预测电力消耗波动方面非常准确。
虽然循环神经网络(RNN),允许信息的持久化,然而,一般的RNN模型对具备长记忆性的时间序列数据刻画能力较弱,在时间序列过长的时候,因为存在梯度消散和梯度爆炸现象RNN训练变得非常困难。...信息在上面流传保持不变会很容易。..., keep_prob: 1}) predict = predict.reshape((-1)) test_predict.extend(predict) # 把predict的内容添加到列表 # 相对误差...同时在实际应用中,均方误差也经常被用为衡量模型的标准: 4、误差标准 相对偏差是指某一次测量的绝对偏差占平均值的百分比。...3、LSTM单元数 由表三可见,两个数据集中,LSTM单元数增加的情况下时,网络训练效果反而下降,可以看出,其实股票行情在7天内的的相关联程度比在14天内的情况高,但是有可能是因为forget_bias
在线评论的细粒度情感分析对于深刻理解商家和用户、挖掘用户情感等方面有至关重要的价值,并且在互联网行业有极其广泛的应用,主要用于个性化推荐、智能搜索、产品反馈、业务安全等。...参赛人员需根据标注的细粒度要素的情感倾向建立算法,对用户评论进行情感挖掘,组委将通过计算参赛者提交预测值和场景真实值之间的误差确定预测正确率,评估所提交的预测算法。...最开始,预计情感相关的词汇相对较少,不需要较大的词表,但是实验过程中发现更大的词表相对地能够提升性能,前提是利用较多的外部数据去比较好的刻画训练数据中低频词的向量。...在当前双层LSTM Encoder的基础上,采用了最小代价的ELMo引入,也就是对当前模型的第一层LSTM进行基于ELMo Loss的预训练,而Finetune的时候,模型结构和之前完全不变,只是第一层...值得一提的是,ELMo和Self Attention的搭配在这个数据集合效果非常好。 ? ? 7.
优点: 从计算的角度上,Sigmoid和Tanh激活函数均需要计算指数,复杂度高,而ReLU只需要一个阈值即可得到激活值; ReLU的非饱和性可以有效地解决梯度消失的问题,提供相对宽的激活边界。...修正线性单元(Rectified Linear Unit,ReLU):ReLU函数被认为有生物上的解释性,比如单侧抑制、宽兴奋边界(即兴奋程度 也可以非常高)。...那么,这个神经元自身参数的梯度永远都会是 0,在以后的训练过程中永远不能被激活。这种现象称为死亡 ReLU 问题 (Dying ReLU Problem),并且也有可能会发生在其它隐藏层。...出使用随机梯度下降的误差反向传播算法的具体训练过程: 7、卷积神经网络哪些部分构成?各部分作用分别是什么?...如果用全连接前馈网络来处理图像时,会存在以下两个问题: 参数太多; 局部不变性特征:全连接前馈网络很难提取局部不变特征,一般需要进行数据增强来提高性能。
FNN损失,仅在潜像上计算,以及输入和输出之间的均方误差损失。现在,对于预测来说,目标由未来的值组成,只要我们想预测,就有很多。换句话说。架构保持不变,但我们以标准的RNN方式进行预测,而不是重建。...两种架构都简单明了,并且在参数数量上具有可比性--基本上都是由两个具有32个单元的LSTM组成(所有实验中n_recurrent将被设置为32)。...这是因为在FNN-LSTM中,我们必须为FNN的损失部分选择一个适当的权重。一个 "适当的权重 "是指在前n个变量之后方差急剧下降,n被认为与吸引子维度相对应。这些方差是这样的。...两种架构上的预测误差如何比较? 图5:FNN-LSTM和vanilla堆叠LSTM得到的每时间段预测误差。天蓝色:LSTM,蓝色:FNN-LSTM。...不过,有趣的是,当检查预测误差时,我们得到的情况与我们在第一个喷泉数据集上得到的情况非常相似。 图11:FNN-LSTM和vanilla堆叠LSTM得到的每时间段预测误差。天蓝色:LSTM。
采用均方根误差(RMSE)的原因是这种计算方式能够降低粗大误差对结果的影响,所得分数的单位和预测数据的单位相同,即洗发水月度销量。 数据准备 在用数据集拟合LSTM模型前,我们必须对数据进行转化。...具体来说,就是将数据缩放带 -1至1的区间内,以满足LSTM模型默认的双曲正切激活函数。 在进行计算和得出误差分数之前,对预测值进行这些转化的逆转化使它们恢复至原来的区间内。...这样做的原因是LSTM网络的初始条件随机生成,得出的结果会大不相同,每进行一次试验,给定配置都会受到训练。 让我们开始进行试验吧。...试验:无更新 在第一个试验中,我们要评测的 LSTM 只受过一次训练,并且用来对每一个时间步进行预测。 我们称它为“不更新模型”或者“不变模型”,因为一旦先用训练数据拟合模型后,模型就不会进行更新。...比较更新epoch数的箱须图 特别需要指出的是,这些结果仅仅是相对此模型配置和数据集而言的。
我非常喜欢作者们在公式7中展现出来的小技巧,棒极了!并且这也是这个方法的关键步骤。 作者们展示了初步的研究结果,他们也的确没有与截断式反向传播作比较。我非常希望他们能在未来做一下比较。...训练和推断之间的差异会导致误差在生成序列的的过程中快速积累。我们提出了一种略微改变训练过程的学习策略,从完全使用真实的之前的字符变成大部分时候使用模型生成的替代字符。...机器学习训练并不会让模型知道它产生的误差的相对质量。从机器学习的角度来说,对一个仅有1个字符错误的输出序列分配高概率,和对一个所有字符都错误的输出序列分配同样高的概率,是一样糟糕的。...通过将模型训练得稳健于它自己产生的错误,Scheduled Sampling方法确保了误差不会累积,让做出离谱预测的可能性大大减小。...Hugo的点评: 这一篇论文非常有用。我会把它列为任何想要开始使用LSTM的人都必读的文章。首先,我发现文中对于LSTM发展历史的介绍非常有趣也非常清晰。
2 神经网络的训练过程 如图1所示,深度学习模型的架构一般是由一些相对简单的模块多层堆叠起来,并且每个模块将会计算从输入到输出的非线性映射。每个模块都拥有对于输入的选择性和不变性。...直到20世纪80年代中期,研究者才发现并证明了,多层架构可以通过简单的随机梯度下降来进行训练。只要每个模块都对应一个比较平滑的函数,就可以使用反向传播过程计算误差函数对于参数梯度。...图1 神经网络的前馈过程 图2 神经网络的反向误差传播过程 图3 链式法则 如图2所示,复杂神经网络基于反向传播过程来计算目标函数相对于每个模块中的参数的梯度。...人们普遍认为这种前馈网络是更容易被训练并且具有更好的泛化能力,尤其是图像领域。卷积神经网络已经在计算机视觉领域被广泛采用。...我们期待未来大部分关于图像理解的进步来自于训练端到端的模型,并且将常规的CNN和使用了强化学习的RNN结合起来,实现更好的聚焦机制。
我们打算使用 LSTM 模型,一种非常适合时序数据的深度学习模型。 数据 在构建模型之前,我们需要先获取一些数据。...从上图可知,大部分的训练时期内虚拟货币都是相对更低价的。因此,训练数据可能对于测试数据来说没有代表性,这会削弱模型泛化到未知数据上的能力。...这个表格代表我们的 LSTM 模型输入数据的一个样本,这 10 条数据可以组成一个窗口,并且我们总共有数百个类似的窗口。...首先检查训练集性能(2017 年 7 月之前的数据)。代码下面的数字代表 50 次训练迭代后该模型在训练集上的平均绝对误差。我们可以看到模型输出就是每日收盘价。 ? 我们不应对它的准确率感到惊讶。...该模型可以检测误差来源并进行调整。事实上,获取趋近于零的训练误差并不难。我们只需要数百个神经元和数千个训练 epoch。我们应该对它在测试集上的性能更感兴趣,因为测试集中是模型未见过的全新数据。 ?
运行试验,每运行完一个试验(共10个),打印训练和测试数据集的均方根误差。 ? 并且在每个训练epoch结束后生成训练数据集和测试数据集均方根误差分数的序列线图。 ?...用1000个Epoch训练的诊断 我们可以看出,模型误差的下行趋势继续保持,并且下降的速度很慢。...但是,最后的epoch对测试数据集预测结果非常好,如果通过更长的训练观察我们能够有机会看到性能进一步增强,我们就必须对其进行探索。 让我们试着将epoch数从2000增至4000....Epoch数为1000、神经元数为3的诊断 结果总结 同样,我们可以在保存所有其他网络配置固定不变的同时,客观地比较增加神经元数量所产生的影响。...如果你对以下想法进行了探索,请在评论区报告你的成果;我非常愿意查看你提出的内容。 Dropout。通过调整方法减慢学习,例如在环式LSTM连接上应用dropout。 网络层。
(1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程; (2)由于ANN的输出结果与实际结果有误差,则计算估计值与实际值之间的误差,并将该误差从输出层向隐藏层反向传播...由于CNN的特征检测层通过训练数据进行学习,所以在使用CNN时,避免了显示的特征抽取,而隐式地从训练数据中进行学习;再者由于同一特征映射面上的神经元权值相同,所以网络可以并行学习,这也是卷积网络相对于神经元彼此相连网络的一大优势...六、LSTM: 核心:模仿一种细胞状态,类似传送带思想,直接在整个链上运行,只有一些少量的线性交互,信息在上面保持不变。利用一种“门”的结构来去除或增加信息到细胞状态的能力,有三个门。...(4)缺点:训练的时候很脆弱,一个非常大的梯度流过一个Relu神经元后,不会对其他数据有激活现象了,设置较小的学习率,这种情况会不那么频繁。...6、卷积计算层: (1)参数共享机制、一组固定的权重和不同窗口内数据做内积:卷积 7、CNN优缺点: (1)优点:共享卷积核、减少了网络自由参数的个数,对高维数据处理无压力;无需手动选取特征,训练好权重
(1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程; (2)由于ANN的输出结果与实际结果有误差,则计算估计值与实际值之间的误差,并将该误差从输出层向隐藏层反向传播...由于CNN的特征检测层通过训练数据进行学习,所以在使用CNN时,避免了显示的特征抽取,而隐式地从训练数据中进行学习;再者由于同一特征映射面上的神经元权值相同,所以网络可以并行学习,这也是卷积网络相对于神经元彼此相连网络的一大优势...五、LSTM: 核心:模仿一种细胞状态,类似传送带思想,直接在整个链上运行,只有一些少量的线性交互,信息在上面保持不变。利用一种“门”的结构来去除或增加信息到细胞状态的能力,有三个门。...缺点:训练的时候很脆弱,一个非常大的梯度流过一个Relu神经元后,不会对其他数据有激活现象了,设置较小的学习率,这种情况会不那么频繁。...卷积计算层: 参数共享机制、一组固定的权重和不同窗口内数据做内积:卷积 CNN优缺点: 优点:共享卷积核、减少了网络自由参数的个数,对高维数据处理无压力;无需手动选取特征,训练好权重,即得特征。
双向LSTM网络可以获得更好的性能,但同时也存在训练复杂度高、解码时延高的问题,尤其在工业界的实时识别系统中很难应用。...一个卷积神经网络提供在时间和空间上的平移不变性卷积,将卷积神经网络的思想应用到语音识别的声学建模中,则可以利用卷积的不变性来克服语音信号本身的多样性。...仅用深层 CNN 实现端对端建模,其性能相对较差,因此将如 LSTM 或GRU的 循环隐层与 CNN结合是一个相对较好的选择。...3)在 DeepCNN 研究中,其卷积结构的时间轴上的感受野,以及滤波器的个数,针对不同规模的数据库训练的语音识别模型的性能起到了非常重要的作用。...但CNN也有局限性,[2,3]研究表明,卷积神经网络在训练集或者数据差异性较小的任务上帮助最大,对于其他大多数任务,相对词错误率的下降一般只在2%到3%的范围内。
传统CNN模型中,处理空间不变性的是maxpooling层。其原因是,一旦我们知道某个特定特性还是起始输入量(有高激活值),它的确切位置就没有它对其他特性的相对位置重要,其他功能一样重要。...Bengio, et al. (1994)等人对该问题进行了深入的研究,他们发现一些使训练 RNN 变得非常困难的相当根本的原因。 然而,幸运的是,LSTM 并没有这个问题!...最终的模型比标准的 LSTM 模型要简单,也是非常流行的变体。 GRU 这里只是部分流行的 LSTM 变体。...2) Decrease Accuracy:对于一棵树Tb(x),我们用OOB样本可以得到测试误差1;然后随机改变OOB样本的第j列:保持其他列不变,对第j列进行随机的上下置换,得到误差2。...神经网络的训练中,通过改变神经元的权重,使网络的输出值尽可能逼近标签以降低误差值,训练普遍使用BP算法,核心思想是,计算出输出与标签间的损失函数值,然后计算其相对于每个神经元的梯度,进行权值的迭代。
如果在市场中,美元更加强势,则印度卢比相对贬值,因此从印度购买 1 美元需要更多的卢比。如果美元相对弱势,则购买 1 美元需要的卢比会更少。...就是说,循环神经网络可以在每一次的迭代中保持网络形态不变的前提下,将输出作为下一步的输入。从编程的角度上说就像是利用确定的输入和一些隐藏变量,在固定不变的程序上保持运行。...LSTM架构 LSTM 模型将各种运算集合在一个单元中,LSTM 有一个内部状态变量,并且该状态变量可以从一个单元传递到另一个 LSTM 单元中,同时通过门运算进行修改。 1. 遗忘门 ?...LSTM模型 最后一层是一个密集层,损失函数为均方误差函数,并且采用随机梯度下降作为优化器。我们将模型训练了 200 个 epoch,并采用了中断训练回调。模型的性质总结在上方展示。 ?...LSTM预测 这个模型几乎学会了将这些年的数据完全重现,并且在一个简单的前馈神经网络的辅助下,不出现延迟。不过,它仍然低估了一些确定的观察值,模型仍然有很大的改进空间。
当训练时有状态的LSTM时,清空训练epoch之间的模型状态很重要。这样的话,每个epoch在训练期间创建的状态才会与该epoch的观察值序列相匹配。...完成训练数据的预测。 一般认为两种方法在某种程度上相当。预测训练数据的后者更好,因为这种方法不需要对网络权重进行任何修改,并且对于存入文件夹的不变网络而言它可以作为可重复步骤。...训练数据集和测试数据集的结构将对此进行模拟。我们将一步生成所有的预测。 最后,收集所有测试数据集的预测,计算误差值总结该模型的预测能力。...采用均方根误差(RMSE)的原因是这种计算方式能够降低粗大误差对结果的影响,所得分数的单位和预测数据的单位相同,即洗发水月度销量。 数据准备 在将为数据集匹配LSTM模型前,我们必须对数据进行转化。...这意味着该模型将与数据匹配,并且能够作出有效预测,但不是匹配该数据集的最优模型。 该网络拓扑包含一个输出、一个4单位的隐藏层和一个1输出值的输出层。