首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Logistic回归中的混淆矩阵

混淆矩阵(Confusion Matrix)是用于评估分类模型性能的一种矩阵表示方法,常用于二分类问题。在Logistic回归中,混淆矩阵用于衡量模型的预测结果与真实标签之间的差异。

混淆矩阵通常由四个指标组成:

  1. 真正例(True Positive,TP):模型将正例正确地预测为正例的数量。
  2. 假正例(False Positive,FP):模型将负例错误地预测为正例的数量。
  3. 假反例(False Negative,FN):模型将正例错误地预测为负例的数量。
  4. 真反例(True Negative,TN):模型将负例正确地预测为负例的数量。

混淆矩阵的示例:

预测为正例

预测为负例

真实正例

TP

FN

真实负例

FP

TN

混淆矩阵可以帮助我们计算出一系列与分类模型性能相关的指标,如准确率(Accuracy)、精确率(Precision)、召回率(Recall)和 F1 值(F1-Score)等。

  • 准确率:模型正确预测的样本数占总样本数的比例,计算公式为 (TP + TN) / (TP + FP + TN + FN)。
  • 精确率:模型预测为正例的样本中,真正例的比例,计算公式为 TP / (TP + FP)。
  • 召回率:真实正例中,模型预测为正例的比例,计算公式为 TP / (TP + FN)。
  • F1 值:综合考虑精确率和召回率的指标,计算公式为 2 (精确率 召回率) / (精确率 + 召回率)。

混淆矩阵在评估分类模型性能时非常有用,可以帮助我们了解模型的预测能力以及对不同类别的分类情况。在实际应用中,可以根据混淆矩阵的结果进行模型调优或者制定相应的策略。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

分类模型的性能评估——以SAS Logistic回归为例: 混淆矩阵

本文从混淆矩阵(Confusion Matrix,或分类矩阵,Classification Matrix)开始,它最简单,而且是大多数指标的基础。...在SAS的Logistic回归中,默认按二分类取值的升序排列取第一个为positive,所以默认的就是求bad的概率。(若需要求good的概率,需要特别指定)。...good 0.06789 good good 0.61195 bad good 0.15306 good Confusion Matrix, 混淆矩阵...我们需要知道,这个模型到底预测对了多少,预测错了多少,混淆矩阵就把所有这些信息,都归到一个表里: 预测 1 0 实 1 d, True Positive c, False Negative c+...一些准备 说,混淆矩阵(Confusion Matrix)是我们永远值得信赖的朋友: 预测 1 0 实 1 d, True Positive c, False Negative c+d,

2.5K50

多分类任务的混淆矩阵

来源: DeepHub IMBA本文约1000字,建议阅读5分钟本文讨论了如何在多分类中使用混淆矩阵评估模型的性能。 什么是混淆矩阵? 它显示了实际值和预测值之间的差异。...对于多分类来说,它是一个 N * N 矩阵,其中 n 是编号。输出列中的类别,也称为目标属性。一二分类任务中包含了 2 个类也就是一个 2*2 矩阵,一般情况下介绍混淆矩阵都会以二分类为例。...那么将得到一个 3*3 矩阵依此类推。通过上面描述我们知道,混淆矩阵的类将具有相同数量的行和列。...我们将使用一个 3 x 3 矩阵,我们将使用我将向您展示的技巧计算 TP、TN、FP、FN 值。这个技巧也可以应用于 4*4、5*5…N*N 矩阵。...考虑这个混淆矩阵在下图 1 中的数据集的输出列中具有 A、B、C 类。

77340
  • 分类模型的评估指标 | 混淆矩阵(2)

    评估指标 01 总体分类精度 指针对每一个随机样本,所分类的结果与检验数据类型相一致的概率,也就是被正确分类的像元总和除以总像元数。放到混淆矩阵中就是对角线上的像元数总和除以总像元数目。...放到混淆矩阵中,就是分类器将整幅影像正确分类为A的像元数(对角线上A类的值)与真实情况下A的像元数(真实情况A的像元数总和)之比。...放到混淆矩阵中,是分类器将整幅影像正确分类为A的像元数和(对角线上A类的值)与分类器分出的所有A类像元数(预测值为A的像元数总和)之比。...04 错分误差 指对于分类结果中的某种类型,与参考图像类型不一致的概率。放到混淆矩阵中,就是被分类器分为A类的像元中,分类出错的像元数所占的比率。...我们也就不难发现,错分误差+用户精度=1 05 漏分误差 指对于参考图像上的某种类型,被分类器分为其他类别的概率。放到混淆矩阵中就是真实情况为A类的像元数中有多少像元数被分类器分为了别的类别。

    2.9K30

    分类模型的评估指标 | 混淆矩阵(1)

    而不是像小编大一时,面对这些专业性极强的东西两眼一抹黑,学习的很吃力;此外,基础是延伸和扩展的前提,基础的东西如果掌握的不牢靠,那么在前沿事物的钻研过程中也不会取得更大的建树。...分类模型的评估指标有很多,今天小编给大家准备的是混淆矩阵。 简介 首先我们来解释一下什么是分类模型的评估指标。...其有两种表现形式:定量指标和图表指标;定量指标即以具体数值来表示分类质量;图表指标即以图表的形式来表示分类质量,以达到增强可视化评估的效果。 我们今天介绍的混淆矩阵就是一个图表形式的指标。...由以上内容可以获得结论:对于一款分类模型,TP值与TN值的数量越多,FP值与FN值的数量越少,模型的分类精度就越高。 02 样本二级指标 混淆矩阵统计的是样本在各个一级指标的数量。...特异度:TN/(TN+FP)=53/(53+20)≈73% 3 ---三级指标 F1 Score=2PR/(P+R)=(2*0.5*0.74)/(0.5+0.74) ≈0.6 以上就是在机器学习领域中的混淆矩阵及它所引申出的几个评估指标

    83350

    R语言逻辑回归logistic对ST股票风险建模分类分析混淆矩阵、ROC曲线可视化

    本文使用了 R 语言中的逻辑回归(logistic)模型,利用国泰安数据库中的103个上市公司的数据进行信用风险建模,其中包括51个正常公司和52个ST公司。...此外,我们还对模型的预测能力进行了评价,绘制了混淆矩阵和ROC曲线,得到了较高的AUC值,表明模型具有较好的预测效果和识别能力。...可视化混淆矩阵可视化ROC曲线performanedict, real ),  "auc" )@y.values[[1]]从AUC的值来看,达到了0.8,因此可以认为模型具有较好的预测效果,同时可以看到...重新建立的模型同样进行了混淆矩阵和ROC曲线的评价,结果显示新模型依然具有较好的预测效果和识别能力。残差分析可以对回归模型的假设条件即随机误差项是否独立同分布进行检验,同时还可以找出离群点。...异常点检测找到异常点后进行剔除,然后进行建模outlier=c(34,45,94 )混淆矩阵可视化roc曲线performancedict, real ),  "auc" )@y.values[[1]]

    25700

    StatQuest专辑汇总贴

    本系列主要是同StatQuest全视频的章节相同,分为:统计基础部分、线性回归、logistic回归、机器学习和高通量测序5个部分,其中还穿插了一些基于R语言实现算法的小章节。 1. 统计基础 ?...推送目录概览: 最小二乘法与线性回归 线性回归中的R方与R方显著性 线性回归的R实现与结果解读 线性回归的妙处:t检验与方差分析 设计矩阵(design matrices) 设计矩阵 in R 3.logistic...推送目录概览: 01 Logistic回归概览 02 Logistic回归中的系数解读 03 最大似然估计法拟合logistic回归曲线 04 Logistic回归:R2与P-value的计算 05...饱和模型与偏差计算R方与p值 06 R语言实现logistic回归 4.机器学习模型 ?...以下为本部分内容的概览: 01 机器学习简介 02 交叉验证法(cross validation) 03 混淆矩阵(confusion matrix) 04 ROC和AUC 05 pROC包绘制ROC

    97730

    混淆矩阵及confusion_matrix函数的使用

    1.混淆矩阵 混淆矩阵是机器学习中总结分类模型预测结果的情形分析表,以矩阵形式将数据集中的记录按照真实的类别与分类模型作出的分类判断两个标准进行汇总。...这个名字来源于它可以非常容易的表明多个类别是否有混淆(也就是一个class被预测成另一个class) 下图是混淆矩阵的一个例子 ?...其中灰色部分是真实分类和预测分类结果相一致的,绿色部分是真实分类和预测分类不一致的,即分类错误的。...2.confusion_matrix函数的使用 官方文档中给出的用法是 sklearn.metrics.confusion_matrix(y_true, y_pred, labels=None, sample_weight...=None) y_true: 是样本真实分类结果,y_pred: 是样本预测分类结果 labels:是所给出的类别,通过这个可对类别进行选择 sample_weight : 样本权重 实现例子:

    2.2K20

    CNN中的混淆矩阵 | PyTorch系列(二十三)

    然后,我们会看到如何使用这个预测张量,以及每个样本的标签,来创建一个混淆矩阵。这个混淆矩阵将允许我们查看我们的网络中哪些类别相互混淆。...混淆矩阵要求 要为整个数据集创建一个混淆矩阵,我们需要一个与训练集长度相同的一维预测张量。...> len(train_set.targets) 60000 一个混淆矩阵将告诉我们模型在哪里被混淆了。更具体地说,混淆矩阵将显示模型正确预测的类别和模型不正确预测的类别。...建立混淆矩阵 我们构建混淆矩阵的任务是将预测值的数量与真实值(目标)进行比较。 这将创建一个充当热图的矩阵,告诉我们预测值相对于真实值的下降位置。...解释混淆矩阵 混淆矩阵具有三个轴: 预测标签(类) 真实标签 热图值(彩色) 预测标签和真实标签向我们显示了我们正在处理的预测类。

    5.4K20

    python—结巴分词的原理理解,Hmm中的转移概率矩阵和混淆矩阵。

    结巴分词的过程: jieba分词的python 代码 结巴分词的准备工作 开发者首先根据大量的人民日报训练了得到了字典库、和Hmm中的转移概率矩阵和混淆矩阵。 1....但是现在就不会了,只要把“中国人民”和“中国人民银行”之间的节点搜索一遍就行了,大大的节省了时间。有句话叫以空间换时间,最适合用来表达这个意思。 2....给定待分词的句子, 使用正则获取连续的 中文字符和英文字符, 切分成 短语列表, 对每个短语使用DAG(查字典)和动态规划, 得到最大概率路径, 对DAG中那些没有在字典中查到的字, 组合成一个新的片段短语..., 使用HMM模型进行分词, 也就是作者说的识别新词, 即识别字典外的新词....这里采用动态规划的最优化搜索。

    1.6K50

    python—结巴分词的原理理解,Hmm中的转移概率矩阵和混淆矩阵。

    结巴分词的过程: jieba分词的python 代码 结巴分词的准备工作 开发者首先根据大量的人民日报训练了得到了字典库、和Hmm中的转移概率矩阵和混淆矩阵。 1....但是现在就不会了,只要把“中国人民”和“中国人民银行”之间的节点搜索一遍就行了,大大的节省了时间。有句话叫以空间换时间,最适合用来表达这个意思。 2....给定待分词的句子, 使用正则获取连续的 中文字符和英文字符, 切分成 短语列表, 对每个短语使用DAG(查字典)和动态规划, 得到最大概率路径, 对DAG中那些没有在字典中查到的字, 组合成一个新的片段短语..., 使用HMM模型进行分词, 也就是作者说的识别新词, 即识别字典外的新词....这里采用动态规划的最优化搜索。

    1.4K20

    100天搞定机器学习|Day4-6 逻辑回归

    当我们输入特征,得到的hθ(x)其实是这个样本属于1这个分类的概率值。也就是说,逻辑回归是用来得到样本属于某个分类的概率。 ? ? 2.评价 回想起之前线性回归中所用到的损失函数: ?  ...如果在逻辑回归中也运用这种损失函数,得到的函数J是一个非凸函数,存在多个局部最小值,很难进行求解,因此需要换一个cost函数。重新定义个cost函数如下: ?...因此我们的特征矩阵将是这两列。我们尝试寻找用户年龄与预估薪资之间的某种相关性,以及他是否购买SUV的决定。 ?...现在我们将评估逻辑回归模型是否正确的学习和理解。因此这个混淆矩阵将包含我们模型的正确和错误的预测。...生成混淆矩阵 from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred) 可视化 from matplotlib.colors

    47660

    机器学习算法之逻辑回归

    —— Arianna Huffington" 逻辑回归(Logistic Regression)是机器学习中的一种分类模型。虽然名字中带有「回归」,但它却不是回归算法,而是一种分类算法。...通过以上示例,可以发现其特点,那就是同属于两个类别之间的判断。逻辑回归可谓是解决二分类问题的利器。 2.原理 要想熟悉逻辑回归,必须掌握以下两点: 1) 逻辑回归中,其输入值是什么?...2) 如何判断逻辑回归的输出? 2.1 输入 ? 逻辑回归的输入其实就是一个线性回归的结果。...当预测结果不准确时,在线性回归中使用了均方误差衡量损失,那么对于逻辑回归,该如何去衡量此损失呢? 3.损失及优化 3.1 损失 逻辑回归的损失,称之为对数似然损失,公式如下: 1) 分开类别: ?...4.分类评估方法 4.1 混淆矩阵 在分类任务下,预测结果(Predicted Condition)与正确标记(True Condition)之间存在四种不同的组合,构成混淆矩阵(适用于多分类) ?

    42410

    机器学习入门 10-8 多分类问题中的混淆矩阵

    本小节主要介绍如何求解多分类问题中的指标,着重介绍多分类问题中的混淆矩阵,将混淆矩阵进行处理转换为error_matrix矩阵,并通过可视化的方式直观的观察分类算法错误分类的地方。...本小节来简单看一下如何利用前几个小节学习的指标来处理多分类问题,在前几个小节的二分类问题中介绍了一个非常重要的小工具混淆矩阵,由混淆矩阵推导出了很多重要的指标,因此最后着重介绍多分类问题中的混淆矩阵。...b 多分类问题中的混淆矩阵 这一小节的重点是介绍多分类问题中的混淆矩阵,不同于sklearn中的precision_score、recall_score和f1_score,sklearn中的混淆矩阵天然支持多分类问题...这里将混淆矩阵映射成灰度图像,因此传入plt.cm.gray; 调用plt.show()绘制混淆矩阵映射的灰度图像; 通过matplotlib将混淆矩阵映射成了灰度图像,在灰度图像上越亮的地方代表数值越大...矩阵的值等于混淆矩阵中的每一个元素值除以混淆矩阵每一个行的和,即cfm / row_sums; 我们并不关注那些完全预测正确的结果,所以使用fill_diagonal函数将error_matrix中对角线位置的值设置为

    5.4K40

    机器学习与深度学习习题集(上)

    7.计算下面多元函数的雅克比矩阵: ? 8.计算下面多元函数的Hessian矩阵: ? 9.计算下面函数的所有极值点,并指明是极大值还是极小值: ? 10.推导多元函数梯度下降法的迭代公式。...18.证明如果采用均方误差函数,线性回归的优化问题是凸优化问题。 19.推导线性回归的梯度下降迭代公式。 20.解释混淆矩阵的概念。 21.解释岭回归的原理。 22.解释LASSO回归的原理。...第11章 线性模型 1.logistic回归中是否一定要使用logistic函数得到概率值?能使用其他函数吗? 2.名称解释:对数似然比。 3.logistic是线性模型还是非线性模型?...4.logistic回归是生成模型还是判别模型? 5.如果样本标签值为0或1,推导logistic回归的对数似然函数: ? 6.logistic回归中为什么使用交叉熵而不使用欧氏距离作为损失函数?...7.证明logistic回归的优化问题是凸优化问题: ? 8.推导logistic回归的梯度下降迭代公式。 9.如果类别别标签为+1和-1,推导logistic回归的对数似然函数: ?

    2.7K22

    SoftMax回归详解

    首先回归一下之前的logistics回归,在logistics回归中,训练数据集由 m 个已标记的样本构成,即:{(x[^1], y[^1]),(x[^2], y[^2]),......在 softmax回归中,我们解决的是多分类问题,类标 y 可以取 k 个不同的值(而不是 2 个)。因此,对于训练集{(x[^1], y[^1]),(x[^2], y[^2]),......在Softmax 回归中将 x 分类为类别 j 的概率为: ? 对于 J(θ) 的最小化问题,目前还没有闭式解法。因此,我们使用迭代的优化算法(例如梯度下降法,或 L-BFGS)。...此时的 Hessian矩阵变为可逆矩阵,并且因为是凸函数,梯度下降法和 LBFGS等算法可以保证收敛到全局最优解。为了使用优化算法,我们需要求得这个新函数 J(θ) 的导数,如下: ?...6. softmax回归与logistics回归的关系 当类别数 k=2 时,softmax 回归退化为 logistic 回归。这表明 softmax 回归是 logistic回归的一般形式。

    1.6K80

    机器学习入门 10-1 准确度的陷阱和混淆矩阵

    先来看看对于一个作用在一组数据上的分类算法如何得到混淆矩阵,进一步就会看到通过这个混淆矩阵能够得到各种比分类准确度还要好的分类指标。 这一小节先来看一看对于二分类问题相应的混淆矩阵是如何创建的。...对于二分类问题来说,混淆矩阵实际上是一个(2, 2)的矩阵,也就是说混淆矩阵中一共有4个元素。 ?...▲二分类问题的混淆矩阵 上图中最上面一行和最左边一列对应的就是这个混淆矩阵相应的行和列的名称,真正的数值分布在(2, 2)的矩阵中: 矩阵中的每一行代表对于预测的问题来说相应的真实值是多少,这里将真实值写成...▲算法预测1万个人的混淆矩阵 对于(2, 2)的混淆矩阵: 对于(0, 0)位置表示的是对于这1万个人中有9978个人他们本身并没有患癌症,同时我们的算法正确预测出他们也并没有患癌症,这就是True...这一小节介绍了混淆矩阵这个工具,在下一小节来看看通过混淆矩阵,我们可以创建出怎样的评价指标,而这些评价指标为什么会比直接看整个算法的分类准确度要更加的好。

    1.1K20

    吴恩达机器学习笔记

    如下,首先要对数据进行矩阵构造,构造后的X的维度为m*(n+1),theta为(n+1)*1,y为m*1 ?...1,反之为0,实际上效果并不好,因为分类并不一定是一个线性函数,因此本节主要讲的内容为logistic regression,之所以称之为logistic是因为hypothesis函数使用了logistic...代价函数 线性回归中的代价函数已经不再适用于逻辑回归中,因为sigmoid函数将造成输出振荡,具有多个局部最小值,即“非凸”。逻辑回归中选用的代价函数如下: ? 可将代价函数合并为 ? ? ?...该代价函数保证了逻辑回归中J(θ)的凸性质。 则J(θ)为 ? 向量化的表示为 ? 通用的梯度下降方法为 ? 应用到逻辑回归中如下 ?...矩阵L的维度为(n+1)*(n+1),当m(样本数)矩阵XTX是不可逆的,但加上λL后, ? 可逆 logistic 回归的正则化 逻辑回归的代价函数为: ? 加上正则项 ?

    52210

    机器学习:Logstic回归

    二、假设函数 在线性回归中,我们的假设函数为 h_{\theta}(x) = \theta^Tx ,为了使得假设函数的取值介于 [0,1] 之间,我们设假设函数为 h_{\theta}(x) =...现在来解释一下,Logistic回归中,假设函数的含义: h_{\theta}(x) = P(y=1|x;\theta) ,即在模型参数 \theta 下, x 成立的条件下, y 取值为x...类似于线性回归中,可以在特征中添加额外的高次多项式项达到拟合非线性数据的目的,在Logistic回归中,也有这样的操作: 四、代价函数 如果使用线性回归中的代价函数,由于假设函数的改变,会使得代价函数变成一个非凸函数...对于Logistic 回归 ,也会出现过拟合的现象: 解决方法: 减少属性的数量。 手动选择需要保留的属性 模型选择算法 正则化。...8.3.2 正规方程法 同时,当 \lambda > 0 时,保证矩阵可逆,一定程度上也解决了矩阵不可逆的情况。

    72120

    【算法】逐步在Python中构建Logistic回归

    logistic回归是一种机器学习分类算法,用于预测分类因变量的概率。 在逻辑回归中,因变量是一个二进制变量,包含编码为1(是,成功等)或0(不,失败等)的数据。...换句话说,逻辑回归模型基于X的函数预测P(Y = 1)。 Logistic回归假设 二元逻辑回归要求因变量为二元的。 对于二元回归,因变量的因子级别1应代表所需的结果。 只应包含有意义的变量。...Logistic回归需要非常大的样本量。 记住上述假设,让我们看一下我们的数据集。 数据探索 该数据集来自UCI机器学习库,它与葡萄牙银行机构的直接营销活动(电话)有关。...) 预测测试集结果并创建混淆矩阵 confusion_matrix()函数将计算混淆矩阵并将结果以数组返回。...如您所见,PCA降低了Logistic回归模型的准确性。 这是因为我们使用PCA来减少维度,因此我们从数据中删除了信息。 我们将在以后的帖子中介绍PCA。

    3K30

    《深度学习Ng》课程学习笔记01week2——神经网络基础

    postId=77852727 2.1 二分分类 二分类例子: 判断图片中是否有猫: 将图片RGB矩阵拉伸为向量: ? ? 使用上面的特征向量来判断图片中是否有猫。...2.2 logistic 回归 ? ? ? 2.3 logistic 回归损失函数 这里给出的是交叉熵损失函数: ? 2.4 梯度下降法 为了最小化代价函数,找到 w,b 的最优解 ?...2.5 到 2.8 是非常基础的导数讲解,这里就不做笔记了。 2.9 logistic 回归中的梯度下降法 ? 2.10 m 个样本的梯度下降 ? 计算步骤为: ?...2.11 向量化 我们讲上述的计算步骤向量化: ? 向量化 和 循环的代码对比: ? 我们可以看到向量化比循环的代码快了300倍左右。 2.12 向量化的更多例子 ? ?...回到我们梯度下降的步骤,将其改为向量化: ? 2.13 向量化 logistic 回归 ? 2.14 向量化 logistic 回归的梯度输出 进一步向量化 logistic 回归: ?

    36530
    领券