首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

StatQuest专辑汇总贴

本系列主要是同StatQuest全视频的章节相同,分为:统计基础部分、线性回归、logistic回归、机器学习和高通量测序5个部分,其中还穿插了一些基于R语言实现算法的小章节。 1. 统计基础 ?...推送目录概览: 最小二乘法与线性回归 线性回归中的R方与R方显著性 线性回归的R实现与结果解读 线性回归的妙处:t检验与方差分析 设计矩阵(design matrices) 设计矩阵 in R 3.logistic...推送目录概览: 01 Logistic回归概览 02 Logistic回归中的系数解读 03 最大似然估计法拟合logistic回归曲线 04 Logistic回归:R2与P-value的计算 05...06 偏差与方差(Bias and Variance) 07 正则化(1):通俗易懂的岭回归 08 正则化(2):与岭回归相似的 Lasso 回归 09 正则化(3):弹性网络回归 10 正则化(4)...:glmnet包实现正则化 11 主成分分析(PCA)原理精讲 12 关于PCA的建议 13 线性判别分析总览 14 t-SNE原理总览 15 层次聚类概览(Hierarchical Clustering

97730

LASSO回归姊妹篇:R语言实现岭回归分析

在岭回归中,范数项是所有系数的平方和,称为L2-Norm。在回归模型中,我们试图最小化RSS+λ (sumβj2)。随着λ增加,回归系数β减小,趋于0,但从不等于0。...此外,岭回归更常用于处理线性回归中的共线性问题。通常认为共线性会导致过度拟合,并且参数估计会非常大。因此,在回归系数β的最小二乘的目标函数中加入惩罚函数可以解决这个问题。...1 ## [100,] 9 8.389e-01 0.03951 以第100行为例,可以看出非零回归系数,即模型中包含的特征数为9。在岭回归中,这个数字是常数。...我们使用glmnet包构建岭回归模型。...下图显示了岭回归中预测值和实际值之间的关系(图46)。同样,在较大的PSA测量值中有两个有趣的异常值。

6.4K43
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    线性回归中的多重共线性与岭回归

    本文将详细介绍线性回归中多重共线性问题,以及一种线性回归的缩减(shrinkage)方法 ----岭回归(Ridge Regression),并对其进行了Python实现 多重共线性 多重共线性是指线性回归模型中的解释变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确...岭回归 岭回归分析(Ridge Regression)是一种改良的最小二乘法,其通过放弃最小二乘法的无偏性,以损失部分信息为代价来寻找效果稍差但回归系数更符合实际情况的模型方程。...岭迹图 以正则化参数即岭参数 为横坐标,线性模型求解的系数即岭系数 为纵坐标的图像,其中每一条彩色的线都是一个岭系数 。...其目标是建立岭参数 与岭系数 之间的直接关系,以此来观察岭参数的变化如何影响了岭系数 的拟合。 岭迹图认为,线条交叉越多,则说明特征之间的多重共线性越高。...我们应该选择系数较为平稳的喇叭口所对应的 取值作为最佳的正则化参数的取值。不存在奇异性时,岭迹图应稳定的逐渐趋向于0。

    2.1K10

    高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据|附代码数据

    使用glmnet()进行岭回归、lasso 和弹性网elastic net 对这些预测模型进行评估 1.1 数据集 在本文中,我们将使用基因表达数据。...4 练习:岭回归的验证 在最小平方回归中,估计函数的最小化  可以得到解 。 对于岭回归所使用的惩罚性最小二乘法准则,你要最小化 ,可以得到解 。  其中II是p×p的识别矩阵。...向下滑动查看结果▼ 5 用glmnet进行岭回归和套索lasso回归 glmnet允许你拟合所有三种类型的回归。使用哪种类型,可以通过指定alpha参数来决定。...6 练习: Lasso 回归 Lasso 回归也是惩罚性回归的一种形式,但我们没有像最小二乘法和岭回归那样的β^的分析解。为了拟合一个Lasso 模型,我们再次使用glmnet()函数。...但是我们自己的函数在后面的lasso和ridge岭回归中会派上用场。

    81200

    高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据|附代码数据

    使用glmnet()进行岭回归、lasso 和弹性网elastic net 对这些预测模型进行评估 1.1 数据集 在本文中,我们将使用基因表达数据。...4 练习:岭回归的验证 在最小平方回归中,估计函数的最小化  可以得到解 。 对于岭回归所使用的惩罚性最小二乘法准则,你要最小化 ,可以得到解 。  其中II是p×p的识别矩阵。...向下滑动查看结果▼ 5 用glmnet进行岭回归和套索lasso回归 glmnet允许你拟合所有三种类型的回归。使用哪种类型,可以通过指定alpha参数来决定。...6 练习: Lasso 回归 Lasso 回归也是惩罚性回归的一种形式,但我们没有像最小二乘法和岭回归那样的β^的分析解。为了拟合一个Lasso 模型,我们再次使用glmnet()函数。...但是我们自己的函数在后面的lasso和ridge岭回归中会派上用场。

    66600

    高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据

    使用glmnet()进行岭回归、lasso 和弹性网elastic net 对这些预测模型进行评估 1.1 数据集 在本文中,我们将使用基因表达数据。...4 练习:岭回归的验证 在最小平方回归中,估计函数的最小化 可以得到解 。 对于岭回归所使用的惩罚性最小二乘法准则,你要最小化 ,可以得到解 。 其中II是p×p的识别矩阵。...向下滑动查看结果▼ 5 用glmnet进行岭回归和套索lasso回归 glmnet允许你拟合所有三种类型的回归。使用哪种类型,可以通过指定alpha参数来决定。...6 练习: Lasso 回归 Lasso 回归也是惩罚性回归的一种形式,但我们没有像最小二乘法和岭回归那样的β^的分析解。为了拟合一个Lasso 模型,我们再次使用glmnet()函数。...但是我们自己的函数在后面的lasso和ridge岭回归中会派上用场。

    2.3K30

    高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据|附代码数据

    使用glmnet()进行岭回归、lasso 和弹性网elastic net 对这些预测模型进行评估 1.1 数据集 在本文中,我们将使用基因表达数据。...4 练习:岭回归的验证 在最小平方回归中,估计函数的最小化  可以得到解 。 对于岭回归所使用的惩罚性最小二乘法准则,你要最小化 ,可以得到解 。  其中II是p×p的识别矩阵。...向下滑动查看结果▼ 5 用glmnet进行岭回归和套索lasso回归 glmnet允许你拟合所有三种类型的回归。使用哪种类型,可以通过指定alpha参数来决定。...6 练习: Lasso 回归 Lasso 回归也是惩罚性回归的一种形式,但我们没有像最小二乘法和岭回归那样的β^的分析解。为了拟合一个Lasso 模型,我们再次使用glmnet()函数。...但是我们自己的函数在后面的lasso和ridge岭回归中会派上用场。

    50800

    手把手带你画高大上的lasso回归模型图

    正则项一般采用一,二范数,使得模型更具有泛化性,同时可以解决线性回归中不可逆情况。这个时候你可能不淡定了,你是魔鬼吗?什么是正则项???...重点来了:采用L1范数则是lasso 回归,L2范数则是岭回归了。那么函数有啥区别呢?如下: ? L1范数 ? ? ? L2范数 ? ?...L2范数是所有参数的平方和,对应的回归方法叫做Ridge回归,岭回归需要注意的是,正则项中的回归系数为每个自变量对应的回归系数,不包含回归常数项 L1和L2各有优劣,L1是基于特征选择的方式,有多种求解方法...3|通过glmnet函数中的设置family参数定义采用的算法模型,比如设置cox,则如下: ? 包自带的绘图如下: ?...4|Lasso回归最重要的就是选择合适的λ值,可以通过cv.glmnet函数实现 ? 结果如下: ?

    11.9K21

    用LASSO,adaptive LASSO预测通货膨胀时间序列|附代码数据

    LASSO最重要的特点之一是它可以处理比观测值多得多的变量,我说的是成千上万的变量。这是它最近流行的主要原因之一。实例在这个例子中,我使用最流行的LASSO,glmnet。...== 数据分解成样本内和样本外y.in=y[1:100]; y.out=y[-c(1:100)]x.in=x[1:100,]; x.out=x[-c(1:100),]## == LASSO == ##glmnet...分析波士顿住房数据实例R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析R语言惩罚logistic逻辑回归(LASSO,岭回归)高维变量选择的分类模型案例Python中的Lasso回归之最小角算法...LARSr语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现R语言实现LASSO回归——自己编写LASSO回归算法r语言中对LASSO回归,Ridge岭回归和Elastic...Net模型实现R使用LASSO回归预测股票收益R语言如何和何时使用glmnet岭回归R语言中的岭回归、套索回归、主成分回归:线性模型选择和正则化Python中的ARIMA模型、SARIMA模型和SARIMAX

    80510

    预后建模绕不开的lasso cox回归

    回归我们并不陌生,线性回归和最小二乘法,逻辑回归和最大似然法,这些都是我们耳熟能详的事物,在生物信息学中的应用也比较广泛, 回归中经常出现两类问题,欠拟合和过拟合。...所有参数的平方和,即L2范数,对应的回归方法叫做Ridge回归,岭回归 lasso回归对应的代价函数如下 岭回归对应的代价函数如下 红框标记的就是正则项,需要注意的是,正则项中的回归系数为每个自变量对应的回归系数...具体到实际操作,使用的是glmnet这个R包 Here, the glmnet package was applied to determine the optimal lambda value corresponding...官方链接如下 https://glmnet.stanford.edu/ 正则项本身只是一个代价函数中的添加项,所以其应用范围不仅局限于线性回归,逻辑回归,cox回归都支持,所以glmnet这个R包也支持多种回归模型的正则化处理...对于cox回归而言,其用法可以参考如下链接 https://glmnet.stanford.edu/articles/Coxnet.html 基本的操作步骤如下 1.

    3.3K20

    正则化(2):与岭回归相似的 Lasso 回归

    1 lasso回归 与 ridge 回归的相同点 1.1 lasso回归 与 ridge 回归主要思想相同 在岭回归中,我们通过残差平方和与惩罚项总和最小,以确定岭回归模型。...1.2 lasso回归与岭回归的运用场景一致 Lasso回归与岭回归的使用场景一致,如在连续变量的线性模型、分类变量的线性模型、logistic回归,以及复杂的模型,详见岭回归。...在岭回归中,随着λ逐渐增大,岭回归中的直线斜率逐渐趋近于0,但是不等于0。岭回归不能减少模型中的参数,只能缩小模型中某些参数的数值(如降低无关变量参数的系数值)。 ?...这是两种正则化回归最主要的区别。 2.1 lasso回归与岭回归的比较 分别将lasso回归和岭回归运用于复杂的线性模型中,如下所示。 ? 岭回归中的惩罚项如下: ?...相反,如果模型中大多数变量为相关变量时,因岭回归不会误删一些变量,故岭回归比lasso回归模型更优,其在不同数据集中的方差更小。 那我们应该如何在两种回归中做出更优的抉择呢?

    1.7K31

    回归,岭回归。LASSO回归

    +kI)XTY为B的岭回归估计,其中K为岭参数,I为单位矩阵,KI为扰动。...三、R语言包——glmnet和lars 1、glmnet包与算法 glmnet包是关于Lasso and elastic-net regularized generalized linear models...这个包采用的算法是循环坐标下降法(cyclical coordinate descent),处理的模型包括 linear regression,logistic and multinomial regression...这个计算是在lambda的格点值上进行的。 关于这个算法见[5][]。 关于glmnet包的细节可参考[4],这篇文献同时也是关于lasso的一个不错的文献导读。...[] cv.glmnet函数利用交叉检验,分别用不同的lambda值来观察模型误差。 左边线对应最佳lamda,右侧线对应一个SE内最佳模型。上图横轴是lambda值的对数,纵轴是模型误差。

    2.5K40

    回归,岭回归。LASSO回归

    +kI)XTY为B的岭回归估计,其中K为岭参数,I为单位矩阵,KI为扰动。...三、R语言包——glmnet和lars 1、glmnet包与算法 glmnet包是关于Lasso and elastic-net regularized generalized linear models...这个包采用的算法是循环坐标下降法(cyclical coordinate descent),处理的模型包括 linear regression,logistic and multinomial regression...这个计算是在lambda的格点值上进行的。 关于这个算法见[5][]。 关于glmnet包的细节可参考[4],这篇文献同时也是关于lasso的一个不错的文献导读。...[] cv.glmnet函数利用交叉检验,分别用不同的lambda值来观察模型误差。 左边线对应最佳lamda,右侧线对应一个SE内最佳模型。上图横轴是lambda值的对数,纵轴是模型误差。

    1.6K10

    R语言如何和何时使用glmnet岭回归

    p=3373 这里向您展示如何在R中使用glmnet包进行岭回归(使用L2正则化的线性回归),并使用模拟来演示其相对于普通最小二乘回归的优势。...岭回归 当回归模型的参数被学习时,岭回归使用L2正则化来加权/惩罚残差。在线性回归的背景下,它可以与普通最小二乘法(OLS)进行比较。OLS定义了计算参数估计值(截距和斜率)的函数。...包 我们将在这篇文章中使用以下软件包: library(tidyverse) library(broom) library(glmnet) 与glmnet的岭回归 glmnet软件包提供了通过岭回归的功能...重要的事情要知道: 它不需要接受公式和数据框架,而需要一个矢量输入和预测器矩阵。 您必须指定alpha = 0岭回归。 岭回归涉及调整超参数lambda。glmnet()会为你生成默认值。...以下是使用mtcars数据集的示例: 因为,与OLS回归不同lm(),岭回归涉及调整超参数,lambda,glmnet()为不同的lambda值多次运行模型。

    5.2K10

    R语言Bootstrap的岭回归和自适应LASSO回归可视化

    p=22921 拟合岭回归和LASSO回归,解释系数,并对其在λ范围内的变化做一个直观的可视化。...使用glmnet软件包中的相关函数对岭回归和lasso套索回归进行分析。 准备数据 注意系数是以稀疏矩阵格式表示的,因为沿着正则化路径的解往往是稀疏的。...使用稀疏格式在时间和空间上更有效率 # 拟合岭回归模型 glmnet(X, Y, alpha = 0) #检查glmnet模型的输出(注意我们拟合了一个岭回归模型 #记得使用print()函数而不是...# 输出最佳lamda处的岭回归coefs coef(glmnet.fit, s = lambda.1se) ?...交叉验证的岭回归 # plot(cv.ridge) # 我们可以查看选定的lambda和相应的系数。例如: lambda.min ? # 根据最小的lambda(惩罚)选择变量 ?

    2.1K30

    r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现|附代码数据

    调整参数λ控制惩罚的总强度。 众所周知,岭惩罚使相关预测因子的系数彼此缩小,而套索倾向于选择其中一个而丢弃其他预测因子。_弹性网络_则将这两者混合在一起。...点击标题查阅往期内容 R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析 01 02 03 04 glmnet 如果我们只是输入对象名称或使用print 函数,则会显示每个步骤的路径...cv.glmnet 返回一个 cv.glmnet 对象,此处为“ cvfit”,其中包含交叉验证拟合的所有成分的列表。 我们可以绘制对象。...目标函数是 其中λ≥0是复杂度参数,0≤α≤1在岭回归(α=0)和套索LASSO(α=1)之间。 应用坐标下降法解决该问题。具体地说,通过计算βj=β〜j处的梯度和简单的演算,更新为 其中 。...glmnet 除少数情况外,多项式逻辑回归中的可选参数 与二项式回归基本相似。

    3.1K20

    R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析|附代码数据

    值网格上计算套索LASSO或弹性网路惩罚的正则化路径 正则化(regularization) 该算法速度快,可以利用输入矩阵x中的稀疏性,拟合线性、logistic和多项式、poisson和Cox回归模型...cv.glmnet执行k-折交叉验证 . ## 执行岭回归 glmnet(x , y ## “alpha=1”是套索惩罚, “alpha=0”是岭惩罚。...alpha = 0) ## 用10折CV进行岭回归 cv.glmnet( ## 类型.测量:用于交叉验证的丢失。...(coef(cv, s = lambda.min))[-1] 这个初始过程给出了基于10折交叉验证选择的最佳岭回归模型的一组系数,使用平方误差度量 作为模型性能度量。.... ## V20 -1.1268794 那个惩罚系数参数允许指定系数特定的惩罚级别。这里我们使用自适应LASSO惩罚,即最佳岭系数绝对值的逆。

    33410

    正则化(1):通俗易懂的岭回归

    内容概要 岭回归的主要思想 岭回归的作用及如何发挥作用 岭回归的多种使用情形 岭回归可以解决样本较少的难题 1.岭回归与线性模型 例如在如下数据中,代表许多只小鼠的体重和体积数据,横坐标对应小鼠的体重,...接着将最小二乘法拟合的直线参数带入岭回归公式中,令λ=1,计算得出该拟合直线在岭回归中的值为1.69。 ?...岭回归中的惩罚项使岭回归模型的斜率小于实际最小二乘法直线模型的斜率,使得小鼠体积随小鼠体重的变化减小,故岭回归模型对小鼠体重变化的敏感度降低。 ? 随着λ的增大,小鼠体重对小鼠体积的变化越来越不敏感。...岭回归的使用场景 在连续变量的线性回归中:如上讨论,岭回归模型满足(残差平方和+ 岭回归惩罚项)之和最小。 在分类变量的线性模型中:岭回归模型满足(残差平方和+ 岭回归惩罚项)之和最小,如下。...在logistic回归中:岭回归模型满足(似然值之和+惩罚项)总和最小。 ? 在较复杂的模型中:岭回归模型中的惩罚项包括除截距外的所有参数,如下图所示。

    10.9K87

    R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析|附代码数据

    正则化路径是在正则化参数lambda的值网格上计算套索LASSO或弹性网路惩罚的正则化路径 正则化(regularization) 该算法速度快,可以利用输入矩阵x中的稀疏性,拟合线性、logistic...cv.glmnet执行k-折交叉验证 . ## 执行岭回归 glmnet(x , y ## “alpha=1”是套索惩罚, “alpha=0”是岭惩罚。...alpha = 0) ## 用10折CV进行岭回归 cv.glmnet( ## 类型.测量:用于交叉验证的丢失。...(coef(cv, s = lambda.min))[-1] 这个初始过程给出了基于10折交叉验证选择的最佳岭回归模型的一组系数,使用平方误差度量 作为模型性能度量。.... ## V20 -1.1268794 那个惩罚系数参数允许指定系数特定的惩罚级别。这里我们使用自适应LASSO惩罚,即最佳岭系数绝对值的逆。

    67740
    领券