首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

OpenGL ES 2.0/3.0中的各向异性照明。黑色伪像

OpenGL ES(OpenGL for Embedded Systems)是一种用于嵌入式系统的图形渲染API,它是OpenGL的子集,专门用于移动设备和嵌入式系统的图形渲染。OpenGL ES 2.0和3.0是其中的两个版本。

各向异性照明(Anisotropic Lighting)是OpenGL ES中的一种照明技术,用于模拟物体表面的光照效果。它通过考虑物体表面的微小凹凸不平来计算光照的强度和方向,从而使得物体表面在不同角度和方向上的光照效果更加真实和细腻。

黑色伪像(Black Pseudo Image)是指在渲染过程中出现的黑色图像伪影。它通常是由于光照计算或纹理映射等问题导致的渲染错误。黑色伪像可能会破坏图像的真实性和质量,影响用户的观感和体验。

为了解决黑色伪像问题,可以采取以下措施:

  1. 检查光照计算是否正确,确保光照方向、强度和颜色等参数设置正确。
  2. 检查纹理映射是否正确,确保纹理坐标的计算和映射正确无误。
  3. 调整渲染管线中的参数和设置,例如深度测试、混合模式等,以确保渲染结果正确。
  4. 使用合适的纹理过滤和采样方式,以减少纹理映射带来的伪像问题。
  5. 对于复杂的场景和模型,可以考虑使用更高级的渲染技术和算法,如阴影映射、光照贴图等,以提高渲染效果和减少伪像问题。

腾讯云提供了一系列与云计算相关的产品和服务,其中包括云服务器、云数据库、云存储、人工智能等。具体针对OpenGL ES和各向异性照明的应用场景,腾讯云没有专门的产品或服务推荐。但可以利用腾讯云提供的云服务器和云存储等基础设施服务来搭建和部署OpenGL ES应用程序,并通过腾讯云的人工智能服务来增强渲染效果和优化照明计算。

请注意,以上答案仅供参考,具体的解决方案和推荐产品应根据实际需求和情况进行选择和定制。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

SceneKit_入门08_材质

SceneKit_入门01_旋转人物 SceneKit_入门02_如何创建工程 SceneKit_入门03_节点 SceneKit_入门04_灯光 SceneKit_入门05_照相机 SceneKit_入门06_行为动画 SceneKit_入门07_几何体 SceneKit_入门08_材质 SceneKit_入门09_物理身体 SceneKit_入门10_物理世界 SceneKit_入门11_粒子系统 SceneKit_入门12_物理行为 SceneKit_入门13_骨骼动画 SceneKit_中级01_模型之间的过渡动画 SceneKit_中级02_SCNView 详细讲解 SceneKit_中级03_切换照相机视角 SceneKit_中级04_约束的使用 SceneKit_中级05_力的使用 SceneKit_中级06_场景的切换 SceneKit_中级07_动态修改属性 SceneKit_中级08_阴影详解 SceneKit_中级09_碰撞检测 SceneKit_中级10_滤镜效果制作 SceneKit_中级11_动画事件 SceneKit_高级01_GLSL SceneKit_高级02_粒子系统深入研究 SceneKit_高级03_自定义力 SceneKit_高级04_自定义场景过渡效果 SceneKit_高级05 检测手势点击到节点 SceneKit_高级06_加载顶点、纹理、法线坐标 SceneKit_高级07_SCNProgram用法探究 SceneKit_高级08_天空盒子制作 SceneKit_高级09_雾效果 SceneKit_大神01_掉落的文字 SceneKit_大神02_弹幕来袭 SceneKit_大神03_navigationbar上的3D文字

04

走过半个多世纪,计算机图形学的发展历程告诉你5毛钱的电影特效究竟多难

2019 ACM 图灵奖大奖出炉,最终花落计算机图形学专家 Patrick M. Hanrahan 和 Edwin E. Catmull,以表彰他们在概念创新和软硬件方面的贡献,以及对计算机图形学所产生的根本性的影响。而上一次图灵奖颁给图形学领域的科学家,还是在 32 年前——1988 年计算机图形学之父 Ivan Sutherland 凭借其发明的 Sketchpad 而获得图灵奖。这种图形用户界面的早期版本直接影响了计算机的用户交互方式,现在早已在个人计算机中无处不在。它发明了一系列在今天的用户界面中被视为「基本操作」的功能:绘制水平线和垂直的线、将绘制的线组合成不同形状、调整图形大小、旋转图形以及缩放窗口等。

05

基于GAN的单目图像3D物体重建(纹理和形状)

很多机器学习的模型都是在图片上操作,但是忽略了图像其实是3D物体的投影,这个过程叫做渲染。能够使模型理解图片信息可能是生成的关键,但是由于光栅化涉及离散任务操作,渲染过程不是可微的,因此不适用与基于梯度的学习方法。这篇文章提出了DIR-B这个框架,允许图片中的所有像素点的梯度进行分析计算。方法的关键在于把前景光栅化当做局部属性的加权插值,背景光栅化作为基于距离的全局几何的聚合。通过不同的光照模型,这个方法能够对顶点位置、颜色、光照方向等达到很好的优化。此项目有两个主要特点:单图像3D物体预测和3D纹理图像生成,这些都是基于2D监督进行训练的。

01

Shader经验分享

流水线 1.应用阶段:(CPU)输出渲染图元,粗粒度剔除等 比如完全不在相机范围内的需要剔除,文件系统的粒子系统实现就用到粗粒度剔除。 2.几何阶段:(GPU)把顶点坐标转换到屏幕空间,包含了模型空间 到世界空间 到观察空间(相机视角view) 到齐次裁剪空间(投影project2维空间,四维矩阵,通过-w<x<w判断是否在裁剪空间) 到归一化设备坐标NDC(四维矩阵通过齐次除法,齐次坐标的w除以xyz实现归一化) 到屏幕空间(通过屏幕宽高和归一化坐标计算)。 a.顶点着色器:坐标变换和逐顶点光照,将顶点空间转换到齐次裁剪空间。 b.曲面细分着色器:可选 c.几何着色器:可选 d.裁剪:通过齐次裁剪坐标的-w<x<w判断不在视野范围内的部分或者全部裁剪,归一化。 e.屏幕映射:把NDC坐标转换为屏幕坐标 3.光栅化阶段:(GPU)把几何阶段传来的数据来产生屏幕上的像素,计算每个图元覆盖了哪些像素,计算他们的颜色、 a.三角形设置:计算网格的三角形表达式 b.三角形遍历:检查每个像素是否被网格覆盖,被覆盖就生成一个片元。 c.片元着色器:对片元进行渲染操作 d.逐片元操作:模板测试,深度测试 混合等 e.屏幕图像 ------------------------------------------------------- 矩阵: M*A=A*M的转置(M是矩阵,A是向量,该公式不适合矩阵与矩阵) 坐标转换: o.pos = mul(UNITY_MATRIX_MVP, v.vertex);顶点位置模型空间到齐次空间 o.worldNormal = mul((float3x3)_Object2World,v.normal);//游戏中正常的法向量转换,转换后法向量可能不与原切线垂直,但是不影响游戏显示,而且大部分显示也是差不多的。一般用这个就行了。 o.worldNormal = mul(v.normal, (float3x3)_World2Object);顶点法向量从模型空间转换到世界空间的精确算法,公式是用_Object2World该矩阵的逆转置矩阵去转换法线。然后通过换算得到该行。 ------------------------------------------------------- API: UNITY_MATRIX_MVP 将顶点方向矢量从模型空间变换到裁剪空间 UNITY_MATRIX_MV 将顶点方向矢量从模型空间变换到观察空间 UNITY_MATRIX_V 将顶点方向矢量从世界空间变换到观察空间 UNITY_MATRIX_P 将顶点方向矢量从观察空间变换到裁剪空间 UNITY_MATRIX_VP 将顶点方向矢量从世界空间变换到裁剪空间 UNITY_MATRIX_T_MV UNITY_MATRIX_MV的转置矩阵 UNITY_MATRIX_IT_MV UNITY_MATRIX_MV的逆转置矩阵,用于将法线从模型空间转换到观察空间 _Object2World将顶点方向矢量从模型空间变换到世界空间,矩阵。 _World2Object将顶点方向矢量从世界空间变换到模型空间,矩阵。 模型空间到世界空间的矩阵简称M矩阵,世界空间到View空间的矩阵简称V矩阵,View到Project空间的矩阵简称P矩阵。 --------------------------------------------- _WorldSpaceCameraPos该摄像机在世界空间中的坐标 _ProjectionParams _ScreenParams _ZBufferParams unity_OrthoParams unity_Cameraprojection unity_CameraInvProjection unity_CameraWorldClipPlanes[6]摄像机在世界坐标下的6个裁剪面,分别是左右上下近远、 ---------------------------- 1.表面着色器 void surf (Input IN, inout SurfaceOutput o) {}表面着色器,unity特殊封装的着色器 Input IN:可以引用外部定义输入参数 inout SurfaceOutput o:输出参数 struct SurfaceOutput//普通光照 { half3 Albedo;//纹理,反射率,是漫反射的颜色值 half3 Normal;//法线坐标 half3 Emission;//自发光颜色 half Specular;//高光,镜面反射系数 half Gloss;//光泽度 half Alpha;//alpha通道 } 基于物理的光照模型:金属工作流Surfa

04

扫码

添加站长 进交流群

领取专属 10元无门槛券

手把手带您无忧上云

扫码加入开发者社群

热门标签

活动推荐

    运营活动

    活动名称
    广告关闭
    领券