首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

有一个列表,希望字符串中出现这个列表中任何一个元素的话就输出 去掉该元素后的字符串

大家好,我是皮皮。 一、前言 前几天在Python钻石群有个叫【盼头】的粉丝问了一个关于Python列表处理的问题,这里拿出来给大家分享下,一起学习。...有一个列表,希望字符串中出现这个列表中任何一个元素的话就输出 去掉该元素后的字符串。下图是他自己写的部分核心代码。...二、解决过程 他自己想到了一个方法,遍历下列表,之后挨个进行替换,方法肯定是可行的,只是觉得应该有更加好的方法。...这里需要注意下any()函数,命中列表中的任一项都会返回True。 不得不说这个any()函数恰到好处。 三、总结 大家好,我是皮皮。...这篇文章基于粉丝提问,针对有一个列表,希望字符串中出现这个列表中任何一个元素的话就输出,去掉该元素后的字符串问题,给出了具体说明和演示,顺利地帮助粉丝解决了问题!

1.9K30

2021-11-08:扁平化嵌套列表迭代器。给你一个嵌套的整数列表 nestedList 。每个元素要么是一个整数,要么是一个列

2021-11-08:扁平化嵌套列表迭代器。给你一个嵌套的整数列表 nestedList 。每个元素要么是一个整数,要么是一个列表;该列表的元素也可能是整数或者是其他列表。...请你实现一个迭代器将其扁平化,使之能够遍历这个列表中的所有整数。...int next() 返回嵌套列表的下一个整数。boolean hasNext() 如果仍然存在待迭代的整数,返回 true ;否则,返回 false 。力扣341。...NestedInteger{nestedList}} } func (it *NestedIterator) Next() int { // 由于保证调用 Next 之前会调用 HasNext,直接返回栈顶列表的队首元素...nest := queue[0] if nest.IsInteger() { return true } // 若队首元素为列表

77420
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    50个Pandas的奇淫技巧:向量化字符串,玩转文本处理

    Python内置一系列强大的字符串处理方法,但这些方法只能处理单个字符串,处理一个序列的字符串时,需要用到for循环。...那么,有没有办法,不用循环就能同时处理多个字符串呢,Pandas的向量化操作(vectorized string operation)就提供了这样的方法。...(),将会返回一个布尔数组 extract() 对每个元素调用re.match(),将会返回所有结果构成的字符串数组 findall() 对每个元素用re.findall() replace() 用正则模式替换字符串...等价于str.rsplit()支持正则表达式 1、split() split,按指定字符或表达式分割字符串,类似split的方法返回一个列表类型的序列 1)基本用法 https://pandas.pydata.org...0开始 slice() 对元素进行切片取值 slice_replace() 对元素进行切片替换 cat() 连接字符串 repeat() 重复元素 normalize() 将字符串转换为Unicode规范形式

    6K60

    Pandas 2.2 中文官方教程和指南(十五)

    ## 拆分和替换字符串 像split这样的方法返回一个列表的 Series: In [38]: s2 = pd.Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype...2 cca 3 ddc dtype: string 传递的类似列表中没有索引的所有元素(例如np.ndarray)必须与调用的Series(或Index)的长度匹配,但Series和Index...(pat) findall() 计算每个字符串中模式/正则表达式的所有出现 match() 对每个元素调用 re.match,返回匹配的组列表 extract() 对每个元素调用re.search,返回一个...2 cca 3 ddc dtype: string 传递的类似列表中没有索引的所有元素(例如np.ndarray)必须与调用的Series(或Index)的长度匹配,但Series和Index...2 cca 3 ddc dtype: string 传递的类似列表中没有索引的所有元素(例如np.ndarray)必须与调用的Series(或Index)的长度匹配,但Series和Index

    23610

    数据科学 IPython 笔记本 7.13 向量化字符串操作

    7.13 向量化字符串操作 原文:Vectorized String Operations 译者:飞龙 协议:CC BY-NC-SA 4.0 本节是《Python 数据科学手册》(Python...Python 的一个优点是它在处理和操作字符串数据方面相对容易。Pandas 构建于此之上,并提供了一套全面的向量化字符串操作,它们成为处理(阅读“清理”部分)实际数据时所需的重要部分。...杂项方法 最后,有一些杂项方法可以执行其他方便的操作: 方法 描述 get() 索引每个元素 slice() 对每个元素切片 slice_replace() 用传递的值替换每个元素的切片 cat() 连接字符串...在互联网上搜索此错误的文本,似乎是由于使用了一个文件,其中每行本身是一个有效的 JSON,但完整文件不是。...从每个食谱中提取完整的成分列表,是该任务的重要部分;遗憾的是,各种所使用格式使得这是一个相对耗时的过程。

    1.6K20

    Python 学习小笔记

    这是我在入门Python的时候边学边记的一些小笔记 字符串 字符串不能被更新 数据集 里面的元素都可以是不同数据类型的 都可以被索引和切片 查看一个变量的数据类型使用type(obj)方法...}这样子是创建一个空字典 使用集合这种数据集类型主要是为了去除重复元素 去重: students=['a','b','a','d'] set(students) 集合的运算:a={2,2,3,4}...身份运算符 is is not 可以判断引用的是不是同一对象 字符串 可以用’string’ 或者 "string"来表示一串字符串 字符串重复: a="string"; a=a*2; print...搭配使用 读取CSV文件一般import进pandas包然后用data=pandas.read_csv(‘filename’,header=0)来读取 返回值是一个dataframe类型的...=False, method=‘pad’, axis=None) 其中,将要被替换的to_replace和value可以是用列表和元组表示的数据集,表示在这个dataframe中这个列表里面的数据都是被替换的对象

    97830

    Python 数据分析(PYDA)第三版(三)

    否则,可以指定要解析的列号或名称的列表。如果列表的元素是元组或列表,则将多个列组合在一起并解析为日期(例如,如果日期/时间跨越两列)。...替换值 使用 fillna 方法填充缺失数据是更一般的值替换的特殊情况。正如您已经看到的,map 可以用于修改对象中的一部分值,但 replace 提供了一种更简单、更灵活的方法。...,后者执行逐元素的字符串替换。...;类似于index,但如果未找到则返回-1 rfind 返回字符串中最后出现的子字符串的第一个字符的位置;如果未找到则返回-1 replace 用另一个字符串替换字符串的出现 strip, rstrip...来引用替换字符串中的匹配组元素 | pandas 中的字符串函数 清理混乱的数据集以进行分析通常需要大量的字符串操作。

    33400

    数据分析从零开始实战 | 基础篇(四)

    基本数据处理:表头处理、dropna和fillna详解 4.基本数据可视化分析案例 二 开始动手动脑 1.Pandas的read_html函数 这里我们要介绍的是Pandas里解析HTML页面的函数:read_html...我的理解 字符串或编译的正则表达式,可选 包含与此正则表达式或字符串匹配的文本的一组表将返回。 除非HTML非常简单,否则您可能需要在此处传递一个非空字符串。...;list1表示待连接的列表 list2.append(str4) 表示在列表list2的末尾添加str4这个元素 ''' else :...我的理解 简单点说,就是替换NA(空值)的值。如果是直接给值,表示全部替换; 如果是字典: {列名:替换值} 表示替换掉该列包含的所有空值。...吐个槽:别看源码里的英文注释单词都很简单,但,太简单了,根本连不成句子,我都是一个个实践+表面翻译,然后才能弄明白参数的意思。

    1.3K20

    Pandas系列 - 排序和字符串处理

    不同情况的排序 排序算法 字符串处理 Pandas有两种排序方式,它们分别是: 按标签 按实际值 不同情况的排序 import pandas as pd import numpy as np unsorted_df...Mergesort是唯一稳定的算法 import pandas as pd import numpy as np unsorted_df = pd.DataFrame({'col1':[2,1,1,1...Pandas提供了一组字符串的操作 这些方法几乎都是使用到的是Python字符串函数 需要将Series对象转化为String对象来操作 举例: import pandas as pd import...a替换为值b 10 repeat(value) 重复每个元素指定的次数 11 count(pattern) 返回模式中每个元素的出现总数 12 startswith(pattern) 如果系列/索引中的元素以模式开始...) 返回模式的所有出现的列表 16 swapcase 变换字母大小写 17 islower() 检查系列/索引中每个字符串中的所有字符是否小写,返回布尔值 18 isupper() 检查系列/索引中每个字符串中的所有字符是否大写

    3.1K10

    Pandas全景透视:解锁数据科学的黄金钥匙

    索引(Index): 索引是用于标识每个元素的标签,可以是整数、字符串、日期等类型的数据。索引提供了对 Series 中数据的标签化访问方式。...值(Values): 值是 Series 中存储的实际数据,可以是任何数据类型,如整数、浮点数、字符串等。...如果传入的是一个字典,则 map() 函数将会使用字典中键对应的值来替换 Series 中的元素。如果传入的是一个函数,则 map() 函数将会使用该函数对 Series 中的每个元素进行转换。...举个例子import pandas as pd# 创建一个 Seriess = pd.Series(['apple', 'banana', 'cherry'])# 定义一个字典,用于替换元素replacement_dict...尽管本文仅触及了Pandas强大功能的表面,但其广阔的应用领域和深邃的技术内涵仍待我们进一步挖掘和学习。

    11710

    高效的10个Pandas函数,你都用过吗?

    用法: pandas.DataFrame.query(self, expr, inplace = False, **kwargs) 参数作用: expr:要评估的查询字符串; inplace=False...Loc and iloc Loc和iloc通常被用来选择行和列,它们的功能相似,但用法是有区别的。...Pct_change Pct_change是一个统计函数,用于表示当前元素与前面元素的相差百分比,两元素的区间可以调整。...比如说给定三个元素[2,3,6],计算相差百分比后得到[NaN, 0.5, 1.0],从第一个元素到第二个元素增加50%,从第二个元素到第三个元素增加100%。...[int或string, 可选]:如果列为MultiIndex, 它将使用此级别来融化 例如有一串数据,表示不同城市和每天的人口流动: import pandas as pd df1 = pd.DataFrame

    4.2K20

    一看就会的Pandas文本数据处理

    文本数据类型 在pandas中存储文本数据有两种方式:object 和 string。...在pandas 1.0 版本之后,新增了string文本类型,可以更好的支持字符串的处理。 1.1. 类型简介 默认情况下,object仍然是文本数据默认的类型。...对于sting来说,返回数字输出的字符串访问器方法将始终返回可为空的整数类型;对于object来说,是 int 或 float,具体取决于 NA 值的存在 对于string类型来说,返回布尔输出的方法将返回一个可为空的布尔数据类型...方法split()返回的是一个列表 我们可以使用get 或 []符号访问拆分列表中的元素 我们还可以将拆分后的列表展开,需要使用参数expand 同样,我们可以限制分隔的次数,默认是从左开始(rsplit...文本拼接 文本拼接是指将多个文本连接在一起,基于str.cat()方法 比如,将一个序列的内容进行拼接,默认情况下会忽略缺失值,我们亦可指定缺失值 连接一个序列和另一个等长的列表,默认情况下如果有缺失值

    1.4K30

    python数据科学系列:pandas入门详细教程

    ,可通过axis参数设置是按行删除还是按列删除 替换,replace,非常强大的功能,对series或dataframe中每个元素执行按条件替换操作,还可开启正则表达式功能 2 数值计算 由于pandas...需注意的是,这里的字符串接口与python中普通字符串的接口形式上很是相近,但二者是不一样的。...时间类型向量化操作,如字符串一样,在pandas中另一个得到"优待"的数据类型是时间类型,正如字符串列可用str属性调用字符串接口一样,时间类型列可用dt属性调用相应接口,这在处理时间类型时会十分有效。...3 数据转换 前文提到,在处理特定值时可用replace对每个元素执行相同的操作,然而replace一般仅能用于简单的替换操作,所以pandas还提供了更为强大的数据转换方法 map,适用于series...,还可接收一个百分位参数列表展示更多信息 ?

    15K20

    pandas常用字符串处理方法看这一篇就够了

    ,且列表中元素均为字符串时,就可以利用str.join()来将每个列表按照指定的连接符进行连接,主要参数有: 「sep:」 str型,必选,用于设置连接符 它除了可以简化我们常规使用apply()配合'...,可以帮助我们传入正则表达式来判断目标字符串是否可以「完全匹配」,其参数同match(),下面是一个简单的例子: 2.3 生成型方法 「生成型」方法这里指的是,基于原有的单列字符型Series数据,按照一定的规则产生出新计算结果的一系列方法...()对指定字符片段或正则模式进行替换 当我们希望对字符型Series进行元素级的字符片段/正则模式替换时,就可以使用到str.replace()方法,其除了常规的pat、flags、regex等参数外,...还有特殊的参数n用于设置每个元素字符串(默认为-1即不限制次数),参数repl用于设置填充的新内容,从开头开始总共替换几次,下面是一些简单的例子: 2.3.3 利用split()按照指定字符片段或正则模式拆分字符串...(),下面是一些简单的例子: 2.4 特殊型方法 除了上述介绍到的字符串处理方法外,pandas中还有一些特殊方法,可以配合字符串解决更多处理需求,典型的有: 2.4.1 利用get_dummies(

    1.3K10

    (数据科学学习手札131)pandas中的常用字符串处理方法总结

    本文我就将带大家学习pandas中常用的一些高效字符串处理方法,提升日常数据处理分析效率: image.png 2 pandas常用字符串处理方法 pandas中的常用字符串处理方法,可分为以下几类:...  当原有的Series中每个元素均为列表,且列表中元素均为字符串时,就可以利用str.join()来将每个列表按照指定的连接符进行连接,主要参数有: sep: str型,必选,用于设置连接符   它除了可以简化我们常规使用...,可以帮助我们传入正则表达式来判断目标字符串是否可以完全匹配,其参数同match(),下面是一个简单的例子: 2.3 生成型方法 生成型方法这里指的是,基于原有的单列字符型Series数据,按照一定的规则产生出新计算结果的一系列方法...()对指定字符片段或正则模式进行替换   当我们希望对字符型Series进行元素级的字符片段/正则模式替换时,就可以使用到str.replace()方法,其除了常规的pat、flags、regex等参数外...,还有特殊的参数n用于设置每个元素字符串(默认为-1即不限制次数),参数repl用于设置填充的新内容,从开头开始总共替换几次,下面是一些简单的例子: 2.3.3 利用split()按照指定字符片段或正则模式拆分字符串

    1.3K30

    《利用Python进行数据分析·第2版》第7章 数据清洗和准备7.1 处理缺失数据7.2 数据转换7.3 字符串操作7.4 总结

    ,可以传入一个由待替换值组成的列表以及一个替换值:: In [63]: data.replace([-999, -1000], np.nan) Out[63]: 0 1.0 1 NaN 2...2.0 3 NaN 4 NaN 5 3.0 dtype: float64 要让每个值有不同的替换值,可以传递一个替换列表: In [64]: data.replace([-999...NaN 2 2.0 3 NaN 4 0.0 5 3.0 dtype: float64 笔记:data.replace方法与data.str.replace不同,后者做的是字符串的元素级替换...一种更快更符合Python风格的方式是,向字符串"::"的join方法传入一个列表或元组: In [140]: '::'.join(pieces) Out[140]: 'a::b::guido' 其它方法关注的是子串定位...表7-4是一个简要概括。 ? pandas的矢量化字符串函数 清理待分析的散乱数据时,常常需要做一些字符串规整化工作。

    5.3K90

    针对SAS用户:Python数据分析库pandas

    一个例子是使用频率和计数的字符串对分类数据进行分组,使用int和float作为连续值。此外,我们希望能够附加标签到列、透视数据等。 我们从介绍对象Series和DataFrame开始。...SAS迭代DO loop 0 to 9结合ARRAY产生一个数组下标超出范围错误。 下面的SAS例子,DO循环用于迭代数组元素来定位目标元素。 SAS中数组主要用于迭代处理如变量。...但SAS/IML 在这些示例的范围之外。 ? 一个Series可以有一个索引标签列表。 ? Series由整数值索引,并且起始位置是0。 ? SAS示例使用一个DO循环做为索引下标插入数组。...我们可能不希望将df["col2"]中的缺失值值替换为零,因为它们是字符串。该方法应用于使用.loc方法的目标列列表。第05章–了解索引中讨论了.loc方法的详细信息。 ? ?...使用pandas 0.19.1文档处理缺失数据。 读这本书 这篇文章是Randy Betancourt的Python SAS用户快速入门指南的摘录。查看完整的章节列表。

    12.1K20
    领券