首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pandas | 如何在DataFrame中通过索引高效获取数据?

今天是pandas数据处理专题第三篇文章,我们来聊聊DataFrame中的索引。 上篇文章当中我们简单介绍了一下DataFrame这个数据结构的一些常见的用法,从整体上大概了解了一下这个数据结构。...今天这一篇我们将会深入其中索引相关的应用方法,了解一下DataFrame的索引机制和使用方法。...先是iloc查询行之后,再对这些行组成的新的DataFrame进行列索引。...因为pandas会混淆不知道我们究竟是想要查询一列还是一行,所以这个时候只能通过iloc或者是loc进行。 逻辑表达式 和numpy一样,DataFrame也支持传入一个逻辑表达式作为查询条件。...总结 今天主要介绍了loc、iloc和逻辑索引在pandas当中的用法,这也是pandas数据查询最常用的方法,也是我们使用过程当中必然会用到的内容。建议大家都能深刻理解,把它记牢。

13.6K10

Pandas必会的方法汇总,数据分析必备!

常见方法 序号 方法 说明 1 df.head() 查询数据的前五行 2 df.tail() 查询数据的末尾5行 3 pandas.qcut() 基于秩或基于样本分位数将变量离散化为等大小桶 4 pandas.cut...() 基于分位数的离散化函数 5 pandas.date_range() 返回一个时间索引 6 df.apply() 沿相应轴应用函数 7 Series.value_counts() 返回不同数据的计数值...,选取单列或列子集 4 df.1oc[val1,val2] 通过标签,同时选取行和列 5 df.iloc[where] 通过整数位置,从DataFrame选取单个行或行子集 6 df.iloc[where_i...3 .drop_duplicates() 删除重复行,返回删除后的DataFrame对象。...举例:删除后出现的重复值: df['city'].drop_duplicates() 结语 文章中总结的是都是一些Pandas常用的方法,至于一些基础的概念还需要你学到Pandas的时候去理解,例如Series

5.9K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas必会的方法汇总,建议收藏!

    columns和index为指定的列、行索引,并按照顺序排列 举例:用pandas创建数据表: df = pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006...,选取单列或列子集 4 df.1oc[val1,val2] 通过标签,同时选取行和列 5 df.iloc[where] 通过整数位置,从DataFrame选取单个行或行子集 6 df.iloc[:,where...3 .drop_duplicates() 删除重复行,返回删除后的DataFrame对象。...举例:删除后出现的重复值: df['city'].drop_duplicates() 结语 文章中总结的是都是一些Pandas常用的方法,至于一些基础的概念还需要你学到Pandas的时候去理解,例如Series...DataFrame是什么?如果你已经清楚了Pandas的这些基础东西之后,搭配上文章中的这些方法,那你用Pandas去做数据处理和分析必然会游刃有余。

    4.8K40

    请教个问题,我想把数据中名字的重复值删掉,只保留年纪大的怎么整呢?

    一、前言 国庆期间在Python白银交流群【谢峰】问了一个Pandas处理的问题,提问截图如下: 代码如下: import pandas as pd data = [{'name': '小明', 'age...= data.sort_values('age', ascending=False).drop_duplicates(subset=['name'], keep='first') print(data)...=‘last’) 参数说明 参数 说明 by 指定列名(axis=0或’index’)或索引值(axis=1或’columns’) axis 若axis=0或’index’,则按照指定列中数据大小排序;...若axis=1或’columns’,则按照指定索引中数据大小排序,默认axis=0 ascending 是否按指定列的数组升序排列,默认为True,即升序排列 inplace 是否用排序后的数据集替换原来的数据...最后感谢粉丝【谢峰】提问,感谢【甯同学】、【论草莓如何成为冻干莓】给出的思路和代码解析,感谢【dcpeng】、【此类生物】、【凡人不烦人】等人参与学习交流。

    1.7K10

    8 个例子帮你快速掌握 Pandas 索引操作

    在处理dataframe时,我们经常需要处理索引,这可能很棘手。在本文中,让我们回顾一些关于用pandas处理索引的技巧。 在读取时指定索引列 在许多情况下,我们的数据源是一个CSV文件。...date,temperature,humidity 07/01/21,95,50 07/02/21,94,55 07/03/21,94,56 默认情况下,pandas将为我们创建一个基于0的索引,如下所示...在处理DataFrame时,一些操作(如删除行、索引选择)将生成原始索引的子集。...重要的是,因为我们将ignore_index设置为True,所以新的DataFrame以基于0的方式使用一组新的索引。...在许多情况下,DataFrame具有基于0的索引。但是,我们不想在导出的CSV文件中包含它。在本例中,我们可以在to_csv方法中设置索引参数。

    95330

    软件测试|数据处理神器pandas教程(十五)

    图片Pandas去重函数:drop_duplicates()的数据清洗利器前言在数据处理和分析中,重复数据是一个常见的问题。为了确保数据的准确性和一致性,我们需要对数据进行去重操作。...Pandas提供了一个功能强大的去重函数——drop_duplicates(),它可以帮助我们轻松地处理数据中的重复值。本文将详细介绍drop_duplicates()函数的用法和应用场景。...去重的重要性和应用场景drop_duplicates()函数用于检测并删除DataFrame中的重复行。...基于索引的去重:df.drop_duplicates(keep='first')默认情况下,保留第一次出现的重复行。可以通过keep参数设置为'last'来保留最后一次出现的重复行。...总结drop_duplicates()函数是Pandas中强大的去重工具,能够帮助我们轻松处理数据中的重复值。通过去重操作,我们可以清洗数据、消除重复值,并确保数据的准确性和一致性。

    20920

    Python数据分析之数据预处理(数据清洗、数据合并、数据重塑、数据转换)学习笔记

    如果希望对异常值进行修改,则可以使用replace()方法进行替换,该方法不仅可以对单个数据进行替换,也可以多个数据执行批量替换操作。  ​...3.2 轴向旋转  ​ 在 Pandas中pivot()方法提供了这样的功能,它会根据给定的行或列索引重新组织一个 DataFrame对象。 ...columns:用于创建新 DataFrame对象的列索引 values:用于填充新 DataFrame对象中的值。  4....数据转换  4.1 重命名轴索引  Pandas中提供了一个rename()方法来重命名个别列索引或行索引的标签或名称。 ...4.1.1 rename()方法  index,columns:表示对行索引名或列索引名的转换。  inplace:默认为False,表示是否返回新的Pandas对象。

    5.5K00

    数据专家最常使用的 10 大类 Pandas 函数 ⛵

    图解数据分析:从入门到精通系列教程数据科学工具库速查表 | Pandas 速查表 1.读取数据我们经常要从外部源读取数据,基于不同的源数据格式,我们可以使用对应的 read_*功能:read_csv:我们读取...很多情况下我们会将参数索引设置为False,这样就不用额外的列来显示数据文件中的索引。to_excel: 写入 Excel 文件。to_pickle:写入pickle文件。...以下函数很常用:duplicated: 识别DataFrame中是否有重复,可以指定使用哪些列来标识重复项。drop_duplicates:从 DataFrame 中删除重复项。...isnull:检查您的 DataFrame 是否缺失。dropna: 对数据做删除处理。注意它有很重要的参数how(如何确定观察是否被丢弃)和 thred(int类型,保留缺失值的数量)。...图片 9.合并数据集我们对多个数据集Dataframe合并的时候,可能用到下列的函数(包括表关联和拼接)。merge:基于某些字段进行表关联。

    3.6K21

    python单细胞学习笔记-day4

    .矩阵 01:20:19 numpy 矩阵:没有行名和列名 numpy 矩阵:推荐只存放一种数据类型的数据,但可允许多种数据类型 2.1 新建矩阵 使用numpy模块中的array()函数 2.2 取子集...,然后传递给pandas中的DataFrame()函数 可以使用index参数指定行名 方式2:从csv文件读取 import pandas as pd df2 = pd.read_csv("day3...series df1.gene.tolist() # series 转为list df1[['gene']] # 返回数据框 提取多列:在方括号里面写有列名组成的列表 3.3 提取行和列 .iloc:基于整数位置...loc:基于标签(行名或者列名)或是布尔值 import pandas as pd df1 = pd.DataFrame({ 'gene': ['gene' + str(i) for i in...列名 3.5 初级统计方法 1)统计量计算 .median() .min() .max() .var() .std() .sum() 2)去重:.drop_duplicates() print(df1

    5300

    Pandas入门教程

    标签的切片对象 data.loc[:,['name','salary']][:5] iloc iloc是基于位置的索引,利用元素在各个轴上的索引序号进行选择,序号超出范围会产生IndexError,...如何处理其他轴上的索引。外部用于联合,内部用于交集。 ignore_index: 布尔值,默认为 False。如果为 True,则不要使用串联轴上的索引值。结果轴将被标记为 0, …, n - 1。...可以是列名称、索引级别名称或长度等于 DataFrame 或 Series 长度的数组;right_on:来自正确 DataFrame 或 Series 的列或索引级别用作键。...可以是列名称、索引级别名称或长度等于 DataFrame 或 Series 长度的数组 left_index:如果True,则使用左侧 DataFrame 或 Series 中的索引(行标签)作为其连接键...((6,4)),index=index) df 输出结果: 六、总结 本文基于源文件zlJob.csv,进行了部分pandas操作,演示了pandas库常见的数据处理操作,由于pandas功能复杂

    1.1K30

    数据分析的利器,Pandas 软件包详解与应用示例

    import pandas as pd import numpy as np # 创建一个时间序列的索引 dates = pd.date_range('2023-01-01', periods=3)...']) # 查看时间序列DataFrame print(timeseries_df) 我们使用pd.date_range创建了一个包含三个日期的索引,然后生成了一些随机数据作为时间序列的值。...Pandas的DataFrame自动将索引识别为日期时间类型,并提供了许多用于处理时间序列数据的方法。...(0).drop_duplicates() # 查看清洗后的数据 print(df_clean) 上面的例子中,首先创建了一个包含缺失值(np.nan)和重复项的DataFrame。...然后使用fillna方法将所有缺失值替换为0,使用drop_duplicates方法删除重复的行。这样我们就得到了一个干净、整洁的数据集。

    10510

    手把手教你做一个“渣”数据师,用Python代替老情人Excel

    文件导入DataFrame,以便我们执行所有任务。...4、使用工作表中的列作为索引 除非明确提到,否则索引列会添加到DataFrame中,默认情况下从0开始。...三、分割:即Excel过滤器 描述性报告是关于数据子集和聚合的,当需要初步了解数据时,通常使用过滤器来查看较小的数据集或特定的列,以便更好的理解数据。...Python提供了许多不同的方法来对DataFrame进行分割,我们将使用它们中的几个来了解它是如何工作的。...14、从DataFrame获取特定的值 ? 如果想要用特定值查看整个DataFrame,可以使用drop_duplicates函数: ? 15、排序 对特定列排序,默认升序: ?

    8.4K30
    领券