首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas中如何查找某列中最大的值?

一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取的问题,问题如下:譬如我要查找某列中最大的值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通的,也能顺利地解决自己的问题。...顺利地解决了粉丝的问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出的问题,感谢【瑜亮老师】给出的思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

40310

利用pandas我想提取这个列中的楼层的数据,应该怎么操作?

一、前言 前几天在Python白银交流群【东哥】问了一个Pandas数据处理的问题。问题如下所示:大佬们,利用pandas我想提取这个列中的楼层的数据,应该怎么操作?...其他【暂无数据】这些数据需要删除,其他的有数字的就正常提取出来就行。 二、实现过程 这里粉丝的目标应该是去掉暂无数据,然后提取剩下数据中的楼层数据。看需求应该是既要层数也要去掉暂无数据。...目标就只有一个,提取楼层数据就行,可以直接跳过暂无数据这个,因为暂无数据里边是没有数据的,相当于需要剔除。...【瑜亮老师】给了一个指导,如下所示:如果是Python的话,可以使用下面的代码,如下所示: # 使用正则表达式提取数字 df['楼层数'] = df['楼层'].str.extract(r'(\d+)'...这篇文章主要盘点了一个Pandas数据处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

12510
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    用过Excel,就会获取pandas数据框架中的值、行和列

    在Excel中,我们可以看到行、列和单元格,可以使用“=”号或在公式中引用这些值。...在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...每种方法都有其优点和缺点,因此应根据具体情况使用不同的方法。 点符号 可以键入“df.国家”以获得“国家”列,这是一种快速而简单的获取列的方法。但是,如果列名包含空格,那么这种方法行不通。...在pandas中,这类似于如何索引/切片Python列表。 要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。

    19.2K60

    Pandas进阶修炼120题,给你深度和广度的船新体验

    pandas as pd df = pd.read_excel('pandas120.xlsx') 22.查看df数据前5行 df.head() 23.将salary列数据转换为最大值与最小值的平均值...df.describe() 28.新增一列根据salary将数据分为三组 bins = [0,5000, 20000, 50000] group_names = ['低', '中', '高'] df...','col3'] 89.提取第一列中不在第二列出现的数字 df['col1'][~df['col1'].isin(df['col2'])] 90.提取第一列和第二列出现频率最高的三个数字 temp...94.提取第一列位置在1,10,15的数字 df['col1'].take([1,10,15]) # 等价于 df.iloc[[1,10,15],0] 95.查找第一列的局部最大值位置 #备注 即比它前一个与后一个数字的都大的数字...CSV文件中读取指定数据 # 备注 从数据1中的前10行中读取positionName, salary两列 df = pd.read_csv('数据1.csv',encoding='gbk', usecols

    6.2K31

    Pandas进阶修炼120题|完整版

    从读取数据到高级操作全部包含,希望可以通过刷题的方式来完整学习pandas中数据处理的各种方法,当然如果你是高手,也欢迎尝试给出与答案不同的解法。...(df['col2'])] 90 数据提取 题目:提取第一列和第二列出现频率最高的三个数字 难度:⭐⭐⭐ 答案 temp = df['col1'].append(df['col2']) temp.value_counts...().index[:3] 91 数据提取 题目:提取第一列中可以整除5的数字位置 难度:⭐⭐⭐ 答案 np.argwhere(df['col1'] % 5==0) 92 数据计算 题目:计算第一列数字前一个与后一个的差值...题目:提取第一列位置在1,10,15的数字 难度:⭐⭐ 答案 df['col1'].take([1,10,15]) 95 数据查找 题目:查找第一列的局部最大值位置 难度:⭐⭐⭐⭐ 备注 即比它前一个与后一个数字的都大的数字...:从CSV文件中读取指定数据 难度:⭐⭐ 备注 从数据1中的前10行中读取positionName, salary两列 答案 df = pd.read_csv('数据1.csv',encoding='gbk

    12.7K106

    玩转数据处理120题|Pandas版本

    Python解法 df.isnull().sum() 54 缺失值处理 题目:提取日期列含有空值的行 难度:⭐⭐ 期望结果 ?...Python解法 df.columns = ['col1','col2','col3'] 89 数据提取 题目:提取第一列中不在第二列出现的数字 难度:⭐⭐⭐ Python解法 df['col1'][~...df['col1'].isin(df['col2'])] 90 数据提取 题目:提取第一列和第二列出现频率最高的三个数字 难度:⭐⭐⭐ Python解法 temp = df['col1'].append...([1,10,15]) # 等价于 df.iloc[[1,10,15],0] 95 数据查找 题目:查找第一列的局部最大值位置 难度:⭐⭐⭐⭐ 备注 即比它前一个与后一个数字的都大的数字 Python解法...'col2']) # 194.29873905921264 101 数据读取 题目:从CSV文件中读取指定数据 难度:⭐⭐ 备注 从数据1中的前10行中读取positionName, salary两列

    7.6K41

    图解四个实用的Pandas函数!

    现在,当我们执行df.shift(1,fill_value=0)即可将数据往下移动一行,并用0填充空值 ? 现在,如果我们需要将前一天的股价作为新的列,则可以使用下面的代码 ?...value_counts() pandas中的value_counts()用于统计dataframe或series中不同数或字符串出现的次数,并可以通过降序或升序对结果对象进行排序,下图可以方便理解。...mask() pandas中的mask方法比较冷门,和np.where比较类似,将对cond条件进行判断,如果cond为False,请保留原始值。如果为True,则用other中的相应值替换。 ?...nlargest() 在很多情况下,我们会遇到需要查找Series或DataFrame的前3名或后5名值的情况,例如,总得分最高的3名学生,或选举中获得的总票数的3名最低候选人 pandas中的nlargest...()和nsmallest()是满足此类数据处理要求的最佳答案,下面就是从10个观测值中取最大的三个图解 ?

    88631

    玩转数据处理120题|R语言版本

    题目:提取popularity列最大值所在行 难度:⭐⭐ R解法 df %>% filter(popularity == max(popularity)) # 同理也有类似pandas的方法 df...is.na(as.numeric(df$`换手率(%)`)),] # 或者根据前几题的经验,非数字就是'--' df % filter(`换手率(%)` !...的方法 names(df) <- c('col1','col2','col3') 89 数据提取 题目:提取第一列中不在第二列出现的数字 难度:⭐⭐⭐ R语言解法 df[!...(df$col1 %in% df$col2),1] 90 数据提取 题目:提取第一列和第二列出现频率最高的三个数字 难度:⭐⭐⭐ R语言解法 count(unlist(c(df$col1,df$col2...:从CSV文件中读取指定数据 难度:⭐⭐ 备注 从数据1中的前10行中读取positionName, salary两列 R语言解法 #一步读取文件的指定列用readr包或者原生函数都没办法 #如果文件特别大又不想全部再选指定列可以用如下办法

    8.9K10

    numpy和pandas库实战——批量得到文件夹下多个CSV文件中的第一列数据并求其最值

    /前言/ 前几天群里有个小伙伴问了一个问题,关于Python读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值,大家讨论的甚为激烈,在此总结了两个方法,希望后面有遇到该问题的小伙伴可以少走弯路...通常我们通过Python来处理数据,用的比较多的两个库就是numpy和pandas,在本篇文章中,将分别利用两个库来进行操作。...3、其中使用pandas库来实现读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值的代码如下图所示。 ? 4、通过pandas库求取的结果如下图所示。 ?...通过该方法,便可以快速的取到文件夹下所有文件的第一列的最大值和最小值。 5、下面使用numpy库来实现读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值的代码如下图所示。 ?.../小结/ 本文基于Python,使用numpy库和pandas库实现了读取文件夹下多个CSV文件,并求取文件中第一列数据的最大值和最小值,当然除了这两种方法之外,肯定还有其他的方法也可以做得到的,欢迎大家积极探讨

    9.5K20

    玩转数据处理120题|Pandas&R

    is.na(as.numeric(df$`换手率(%)`)),] # 或者根据前几题的经验,非数字就是'--' df % filter(`换手率(%)` !...的方法 names(df) <- c('col1','col2','col3') 89 数据提取 题目:提取第一列中不在第二列出现的数字 难度:⭐⭐⭐ Python解法 df['col1'][~df['...(df$col1 %in% df$col2),1] 90 数据提取 题目:提取第一列和第二列出现频率最高的三个数字 难度:⭐⭐⭐ Python解法 temp = df['col1'].append(df...dist(rbind(df$col1,df$col2)) # 1 # 2 197.0102 101 数据读取 题目:从CSV文件中读取指定数据 难度:⭐⭐ 备注 从数据1中的前10行中读取positionName...,我想你已经掌握了处理数据的常用操作,并且在之后的数据分析中碰到相关问题,希望武装了Pandas的你能够从容的解决!

    6.1K41

    Pandas进阶修炼120题|金融数据处理

    本文为Pandas进阶修炼120题系列第三期,前两期戳第一期、第二期。今天的内容主要为Pandas处理金融(股票)数据相关操作,包含异常值处理、数据可视化、指标计算等,我们开始吧!...答案 data.head(3) 53 缺失值处理 题目:查看每列数据缺失值情况 难度:⭐⭐ 期望结果 代码 1 简称 2 日期 2 前收盘价(元) 2 开盘价(元) 2 最高价(元) 2 最低价(元)...答案 data.isnull().sum() 54 缺失值处理 题目:提取日期列含有空值的行 难度:⭐⭐ 期望结果 ?...备注 axis:0-行操作(默认),1-列操作 how:any-只要有空值就删除(默认),all-全部为空值才删除 inplace:False-返回新的数据集(默认),True-在原数据集上操作 57...以上就是Pandas进阶修炼120题第三期的全部内容,可以看到pandas处理金融数据非常方便,尤其在量化交易相关,比如计算完相关指标之后可以做一个简单的策略,感兴趣的读者可以深入研究。

    61641

    用 Pandas 进行数据处理系列 二

    [‘b’].unique()查看某一列的唯一值df.values查看数据表的值df.columns查看列名df.head()查看默认的前 10 行数据df.tail()查看默认的后 10 行数据 数据表清洗...loc函数按标签值进行提取iloc按位置进行提取ix可以同时按标签和位置进行提取 具体的使用见下: df.loc[3]按索引提取单行的数值df.iloc[0:5]按索引提取区域行数据值df.reset_index...()重设索引df=df.set_index(‘date’)设置 date 为索引df[:‘2013’]提取 2013 之前的所有数据df.iloc[:3,:2]从 0 位置开始,前三行,前两列,这里的数据不同去是索引的标签名称...,而是数据所有的位置df.iloc[[0,2,5],[4,5]]提取第 0、2、5 行,第 4、5 列的数据df.ix[:‘2013’,:4]提取 2013 之前,前四列数据df[‘city’].isin...,然后将符合条件的数据提取出来pd.DataFrame(category.str[:3])提取前三个字符,并生成数据表 数据筛选 使用与、或、非三个条件配合大于、小于、等于对数据进行筛选,并进行计数和求和

    8.2K30

    Python数据分析实战基础 | 灵活的Pandas索引

    ;列的话我们需要流量来源、来源明细、访客和转化,也就是前4列,传入参数0:4。...在loc方法中,我们可以把这一列判断得到的值传入行参数位置,Pandas会默认返回结果为True的行(这里是索引从0到12的行),而丢掉结果为False的行,直接上例子: ?...场景三:我们想要提取二级、三级流量来源、来源明细对应的访客和支付转化率。 思路:行提取用判断,列提取输入具体名称参数。 ?...此处插播一条isin函数的广告,这个函数能够帮助我们快速判断源数据中某一列(Series)的值是否等于列表中的值。...要三个条件同时满足,他们之间是一个“且”的关系(同时满足),在pandas中,要表示同时满足,各条件之间要用"&"符号连接,条件内部最好用括号区分;如果是“或”的关系(满足一个即可),则用“|”符号连接

    1.1K20

    初学者使用Pandas的特征工程

    使用pandas Dataframe,可以轻松添加/删除列,切片,建立索引以及处理空值。 现在,我们已经了解了pandas的基本功能,我们将专注于专门用于特征工程的pandas。 !...估算这些缺失的值超出了我们的讨论范围,我们将只关注使用pandas函数来设计一些新特性。 用于标签编码的replace() pandas中的replace函数动态地将当前值替换为给定值。...在此,每个新的二进制列的值1表示该子类别在原始Outlet_Type列中的存在。 用于分箱的cut() 和qcut() 分箱是一种将连续变量的值组合到n个箱中的技术。...用于文本提取的apply() pandas的apply() 函数允许在pandas系列上传递函数并将其传递到变量的每个点。 它接受一个函数作为参数,然后将其应用于数据框的行或列。...在我们的大卖场销售数据中,我们有一个Item_Identifier列,它是每个产品的唯一产品ID。此变量的前两个字母具有三种不同的类型,即DR,FD和NC,分别代表饮料,食品和非消耗品。

    4.9K31

    Python~Pandas 小白避坑之常用笔记

    ) 2.缺失值统计、剔除: dropna()参数介绍: axis:0(对行数据进行剔除)、1(对列数据进行剔除),默认为0 how:any(行中有任意一个空值则剔除), all(行中全部为空值则剔除...四、数据提取、loc、iloc的使用 1.根据列名提取数据 import pandas as pd sheet1 = pd.read_excel(io='非洲通讯产品销售数据.xlsx', sheet_name...=0, usecols=None) sheet1 = sheet1.iloc[0:4, 1:3] # 提取前5行, 1、2、3 列 4.loc常用示例 import pandas as pd sheet1...value=填充的值 # sheet1['年度'] = sheet1['日期'].dt.year # 根据日期字段 新增年份列 # sheet1['季度'] = sheet1['日期'].dt.quarter...='test.csv') ---- 总结 以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法,续有常用的pandas函数会在这篇博客中持续更新

    3.1K30

    如何在 Python 数据中灵活运用 Pandas 索引?

    基于位置(数字)的索引  先看一下索引的操作方式:  我们需要根据实际情况,填入对应的行参数和列参数。  场景一(行选取)  目标:选择“流量来源”等于“一级”的所有行。 ...:18;列的话我们需要流量来源、来源明细、访客和转化,也就是前4列,传入参数0:4。 ...在loc方法中,我们可以把这一列判断得到的值传入行参数位置,Pandas会默认返回结果为True的行(这里是索引从0到12的行),而丢掉结果为False的行,直接上例子:  场景二:我们想要把所有渠道的流量来源和客单价单拎出来看一看...思路:行提取用判断,列提取输入具体名称参数。  此处插播一条isin函数的广告,这个函数能够帮助我们快速判断源数据中某一列(Series)的值是否等于列表中的值。...先看看均值各是多少:  再判断各指标列是否大于均值:  要三个条件同时满足,他们之间是一个“且”的关系(同时满足),在pandas中,要表示同时满足,各条件之间要用"&"符号连接,条件内部最好用括号区分

    1.7K00

    pandas时间序列常用方法简介

    01 创建 pandas时间序列创建最为常用的有以下2种方式: pd.date_range(),创建指定日期范围,start、end和periods三个参数任意指定2个即可,另有频率、开闭端点、时区等参数可选...需要指出,时间序列在pandas.dataframe数据结构中,当该时间序列是索引时,则可直接调用相应的属性;若该时间序列是dataframe中的一列时,则需先调用dt属性再调用接口。...2.truncate截断函数,实际上这也不是一个时间序列的专用方法,而仅仅是pandas中布尔索引的一种简略写法:通过逐一将索引与起始值比较得出布尔值,从而完成筛选。...需注意的是该方法主要用于数据列的时间筛选,其最大优势在于可指定时间属性比较,例如可以指定time字段根据时间筛选而不考虑日期范围,也可以指定日期范围而不考虑时间取值,这在有些场景下是非常实用的。 ?...以差值窗口长度=1为例,实际上此时只是简单的执行当前值与其前一个值的差,其应用shift的等价形式即为: ? 3.rolling,这是一个原原本本的滑动窗口,适用场景是连续求解一段时间内的某一指标。

    5.8K10

    Kaggle影评数据集,Python数据分析小例子1-4

    针对这类字段取值,可使用Pandas中Series提供的str做一步转化,注意它是向量级的,下一步,如Python原生的str类似,使用contains判断是否含有comedy字符串: mask = movies.Genre.str.contains...('comedy',case=False,na=False) 注意使用的两个参数:case, na case为 False,表示对大小写不敏感;na Genre列某个单元格为NaN时,我们使用的充填值...验证结果,打印movies表的前10行,验证OK,只有index为5,6的行,其Genre取值包括 comedy. ?...4 提取目标行记录 得到掩码mask后,pandas非常方便地能提取出目标记录: comedy = movies[mask] comdey_ids = comedy['Movie ID'] 以上,在pandas...因为字段 Movie ID 中间有空格,所以不能使用comedy.Movie ID提取这列值。

    1.6K11

    饭店流量指标预测

    同时也手动删除了9个大区以外的天气文件,剩下323个可用文件。部分天气特征的缺失值用前一天的数值来填充。...在这323个可以天气数据中,结合提取出来的大区和城市特征,发现有34个城市,称一类地方,可以直接用对应的城市天气数据合并到训练数据的后面;有7个城市,称为二类地方,缺失列比较多,要用大区天气数据填充二类地方的缺失数据...部分天气特征的缺失值用前一天的数值来填充。这两类地方保存成19个以大区名_城市名.csv为名的文件。 有62个城市是没对就城市的天气数据,所以用大区的天气数据填充。...没做时间序列客流特征时,线形模型得到的R2不到0.4,加了前七天客流特征加,接近0.5。然后再加到前14天客流特征也有提升,从特征重要性看,前14天比前一天还重要。...于再次以构建时间序列客流特征,加到了前21天。从特征要性看,前一天和前21天的重要性差不多重要,所以加到前21天还是有用的。因为开店最短的店铺只有20天,就没加到前28天的数据。

    56910
    领券