今天讲讲pandas模块 生成一个空的df Part 1:场景描述 一些情况下需要对df进行操作,若这个df是中间计算出来,有可能是空字符串,这样后续的很多运算就会报错 其中的一个方法就是给其赋值一个空的...df Part 2:代码1 import pandas as pd df = pd.DataFrame(columns=['A', 'B', 'C', 'D']) print(df) if df.empty...: print("为空的df") print(type(df)) 代码截图 执行结果 Part 3:代码2 import pandas as pd df = pd.DataFrame...() print(df) if df.empty: print("为空的df") print(type(df)) 运行结果 Part 4:部分代码解读 代码1中设置了列名,对于一个空的...df来说,其实可以不需要列名 代码2中无列名,生成的空df更纯粹一点 注意两者的类型都是pandas.core.frame.DataFrame ---- 本文为原创作品,欢迎分享朋友圈
样例数据 df = pd.DataFrame({‘X’: [1, 2, 7, 5, 10], ‘Y’: [4, 3, 8, 2, 9]}) df[‘X’] [[]] df[[‘X’]]...df[‘X’]更像是pd.series类型的,而df[[“X”]]是pd.Dateframe类型,事实也的确如此。...type(df[‘X’]) type(df[[‘X’]]) 除此之外,df[[‘X’,‘Y’]]这样的写法也是被支持的,而df[‘X’,‘Y’]则不被允许。...df[[‘X’,‘Y’]]
Pandas查询数据的简便方法df.query pandas中数据查询query函数 方法对比: 使用df[(df[“a”] > 3) & (df[“b”]<5)]的方式; 使用df.query...27 -5 -12 多云~晴 西北风 3级 48 优 1 复杂条件查询 注意,组合条件用&符号合并,每个条件判断都得带括号 ## 查询最高温度小于30度,并且最低温度大于15度,并且是晴天,并且天气为优的数据...可以简化查询 形式:DataFrame.query(expr, inplace=False, **kwargs) 其中expr为要返回boolean结果的字符串表达式 形如: df.query(‘a<100...02 2 -5 阴~多云 东北风 1-2级 49 优 1 2 2018-01-03 2 -5 多云 北风 1-2级 28 优 1 查询最高温度小于30度,并且最低温度大于15度,并且是晴天,并且天气为优的数据...## 查询最高温度小于30度,并且最低温度大于15度,并且是晴天,并且天气为优的数据 df.query("bWendu=15 & tianqi=='晴' & aqiLevel
文章目录 apply()函数 介绍 样例 性能比较 apply() 数据聚合agg() 数据转换transform() applymap() 将自己定义的或其他库的函数应用于Pandas对象,有以下...) pandas.core.series.Series'> >>> df['score_math'].apply('mean') 86.33333333333333 >>> type...(df['score_math'].apply(np.mean)) pandas.core.series.Series'> #逐行求每个学生的平均分 >>> df.apply(np.mean...()的特例,可以对pandas对象进行逐行或逐列的处理; 能使用agg()的地方,基本上都可以使用apply()代替。...再将结果合并;整个DataFrame的函数输出可以是标量、Series或DataFrame;每个apply语句只能传入一个函数; agg可以通过字典方式指定特征进行不同的函数操作,每一特征的函数输出必须为标量
文章目录 list转数据框(Dataframe) pandas读取无头csv 重新采样 pandas 读取 excel list转数据框(Dataframe) # -*- coding:utf-8 -*...- # /usr/bin/python # 字典转数据框(Dataframe) from pandas.core.frame import DataFrame a=[1,2,3,4]#列表a b=[...将包含不同子列表的列表转换为数据框 a=[[1,2,3,4],[5,6,7,8]]#包含两个不同的子列表[1,2,3,4]和[5,6,7,8] data=DataFrame(a)#这时候是以行为标准写入的 print(data) pandas...读取无头csv import pandas as pd df = pd.read_csv('allnodes.csv',header = None)#因为没有表头,不把第一行作为每一列的索引 data...= [] for i in df.index: data.append(tuple(df.values[
系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲...Python的科学计算及可视化 今天讲讲pandas模块 实现对Dataframe的遍历 Part 1:目标 pandas功能很强大,我们可以使用pandas直接读取数据库获取一个Df,也可以直接读取Excel...获取一个Df,等等 那么对于生成的Df想获取其中每一个元素怎么实现呢?...本文就是实现对Df的遍历循环,获取每一行每一列的内容 结果如图 ?...Part 3:部分代码解读 for index, row in df_1.iterrows():,其中index为行索引的值,row表示这一行的一个Series,通过type函数获取其数据类型,如下图所示
Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 这个系列讲讲Python的科学计算版块 今天讲讲pandas...Part 2:代码 import pandas as pd dict_1 = {"time": ["2019-11-2", "2019-11-2", "2019-11-2", "2019-11-3",...= pd.DataFrame(dict_1, columns=["time", "pos", "value1", "value2", "value3"])df_2 = df.pivot(index="...pos", columns='time', values='value1')print(df)print("\n")print(df_2) 代码截图 ?...如果调换行列df_3 = df.pivot(index="time", columns='pos', values='value1'),结果如下图 结合上一章节,是不是可以快速算出每一个pos的各种统计值
Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 这个系列讲讲Python的科学计算版块 今天讲讲pandas...列作为连接,将两个Df合并成一个Df,效果如下图 合并 ?...Part 2:代码 import pandas as pd dict_1 = {"time": ["2019-11-2", "2019-11-2", "2019-11-2"], "pos..._2")print(df_2) df_merge_1 = pd.merge(df_1, df_2, how='left', on='pos')print("\ndf_merge_1")print(df_merge...Part 3:部分代码解读 pd.merge(df_1, df_2, how='left', on='pos'),以pos列作为df_1和df_2的关联列,采用左连接的方式 左连接,可以简单理解为行采用左边的
系统:Windows 11 编辑器:JetBrains PyCharm Community Edition 2018.2.2 x64 这个系列讲讲Python的科学计算及可视化 pandas模块 今天讲讲如何讲一个列表转换为...df Part 1:场景说明 我们在工作中可能需要对一些列表或者字典数据进行运算 当然我们可以通过循环判断一波处理得到想要的结果,但着实复杂低效 遇到这种计算问题,自然想到pandas这个非常好用的库...那我们只需要将需要处理的列表字典转换为pandas的df,这样后续处理就非常的高效了 Part 2: 代码 import pandas as pd list_1 = [{"a": 1, "b":...= pd.DataFrame(list_1) print("\ndf内容:") print(df.head(5)) 图1 代码截图 图2 执行结果 Part 3:部分代码说明 df = pd.DataFrame...(list_1),核心就是将该列表传给pd.DataFrame 观察执行结果,规律: 列表中的每一个元素是一个字典 每个字典的键是一样的,转换后对应df的列名 生成的df行索引采用自然数 本文为原创作品
系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲...Python的科学计算及可视化 今天讲讲pandas模块 对不同df进行按行或者按列的拼接 Part 1:场景描述 ?...import pandas as pd # 显示所有列 pd.set_option('display.max_columns', None) # 显示所有行 pd.set_option('display.max_rows...', None) # 设置value的显示长度为100 pd.set_option('max_colwidth', 100) # 设置对齐 pd.set_option('display.unicode.ambiguous_as_wide...将df_1的value3列索引改为value4 ? ? 本文为原创作品,欢迎分享朋友圈
系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲...Python的科学计算版块 今天讲讲pandas模块:根据条件对Df进行筛选 Part 1:示例 已知df_1,有3列["value1", "value2", "value3"], 不同筛选条件下,获取新的...df_2 ? df_3 ? df_4 ? df_5 ?...Part 2:代码 import pandas as pd dict_1 = {"value1": ["P1", "P2", "P3"], "value2": [0.5, 0.8,...(df_2) print("\n满足任一条件") df_3 = df_1[(df_1["value2"] > 0.6) | (df_1["value3"] < 5)] print(df_3) print
在python中我们可以通过pandas.pivot_table函数来实现数据透视表的功能。...本篇文章介绍了pandas.pivot_table具体的使用方法,在最后还准备了一个备忘单,希望能够帮助你记住如何使用pandas的pivot_table。 1....# 加载数据 import numpy as np import pandas as pd import seaborn as sns df = sns.load_dataset('titanic')...如果传入参数为list,则每个聚合函数对每个列都进行一次聚合。 如果传入参数为dict,则每个列仅对其指定的函数进行聚合,此时values参数可以不传。...备忘单 为了试图总结所有这一切,本文创建了一个备忘单,希望它能够帮助你记住如何使用pandas的pivot_table。 ?
系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲...Python的科学计算及可视化 今天讲讲pandas模块 计算Dataframe某一列的和、均值、最大值、最小值、样本标准方差 Part 1:背景 ?...样本标准方差 Df ?...import pandas as pd dict_1 = {"time": ["2019-11-02", "2019-11-03", "2019-11-04", "2019-11-05",...请看下回分解 本文为原创作品,欢迎分享朋友圈
请思考: 1 透视表是什么?会用Excel做透视表吗? 2 pandas如何做透视表分析?使用什么函数?函数的参数如何选择和设置? 1 透视表介绍 数据透视表是一个用来总结和展示数据的强大工具。...pandas提供了pivot_table()函数以快捷地把DataFrame转换为透视表。...2 导入数据 代码 # 导入Python库 import numpy as np import pandas as pd # 读取Excel文件,并且查看前5行数据集 df = pd.read_excel...3 数据透视表分析 简单的透视表,指定DataFrame里面需要透视的一个index,以Name为index做透视表。...5 总结 pandas通过pivot_table()函数可以实现透视表,通过设置函数里面的不同参数以达成不同的目标。
参考链接: 创建Pandas Series 创建Series 利用实数创建series # 利用实数创建Series 并指定key s1 = pd.Series(3, index=list("a")...) print(s1) 利用列表创建series s2 = pd.Series(list("abcdfgdhsdafcv")) print(s2) 利用元祖创建series s3 = pd.Series...(tuple("sdfacdfgd")) print(s3) 利用数组创建series s4 = pd.Series(numpy.array(list([1, 2, 3, 4, 5, 6, 7, 8..., 9]))) print(s4) 利用字典创建series dictionary1 = {"name": "nick", "age": 12, "sex": "male"} s5 = pd.Series
参考链接: 创建一个Pandas DataFrame – Start 如何创建 Series? ...import pandas as pd # 自动创建 index my_data = [10, 20, 30] s = pd.Series(data=my_data) print(s) # 指定 index...', 'C1', 'C2'],} df = pd.DataFrame(data) df = pd.DataFrame(data, index=['L0', 'L1', 'L2']) print(df)...lb=%E5%85%A8%E9%83%A8&xl=1 # 通过读取 Excel 文件创建 DataFrame df = pd.read_excel("index300.xls", sheet_name=...) print(df) 通常我们都是通过读取文件创建 DataFrame,DataFrame 提供了下面的 read_* 方法可以从不同的数据源创建 DataFrame。
系统:Windows 11 编辑器:JetBrains PyCharm Community Edition 2018.2.2 x64 这个系列讲讲Python的科学计算及可视化 pandas模块 今天讲讲如何将一个列表转换为...df Part 1:场景说明 我们在工作中可能需要对一些列表或者字典数据进行运算 当然我们可以通过循环判断一波处理得到想要的结果,但着实复杂低效 遇到这种计算问题,自然想到pandas这个非常好用的库...那我们只需要将需要处理的列表字典转换为pandas的df,这样后续处理就非常的高效了 上一篇文章列表内每个元素是一个字典,那么如果列表内的元素也是一个列表如何处理呢?...Part 2: 代码 import pandas as pd list_1 = [[1, 2, 3, 4], [2, 3, 4, 5], [6, 3, 8, 5]] print("\n列表内容:...) print("\ndf内容:") print(df) 图1 代码截图 图2 执行结果 Part 3:部分代码说明 df = pd.DataFrame(list_1, columns=list_column
本文将介绍如何使用Java来构建PivotTable以及实现数据透视分析,并将其导出为PDF。...创建数据透视表并导出为PDF 创建步骤: 创建工作簿(workbook),工作表(worksheet)。 设置数据:在指定位置设置数据区域。...创建PivotTable:在Excel文件中选择需要创建PivotTable的数据区域,并指定行、列、值和筛选器字段。...生成PivotTable报表:使用API接口,将创建好的PivotTable导出为PDF文件。...worksheet.getRange("A1"), "pivottable1"); worksheet.getRange("J1:J16").setNumberFormat("$#,##0.00"); //4.配置透视表的字段
临时表创建 // An highlighted block 两种临时表的语法: create global temporary table 临时表名 on commit preserve|delete...rows 用preserve时就是SESSION级的临时表,用delete就是TRANSACTION级的临时表 一、SESSION级临时表 1、建立临时表 Sql代码 create global temporary...结束SESSION,重新登录,再查询数据select *from temp_tbl,这时候记录已不存在,因为系统在结束SESSION时自动清除记录 [1] 二、TRANSACTION级临时表 1、建立临时表...temp_tbl 这时候可以看到刚才插入的记录'test transaction table'已不存在了;同样,如果不提交而直接结束SESSION,重新登录记录也不存在 DoingNetDbContext这个地方加表名字...function (e) { alert("错误是:" + e.responseText); } }) } else { } } 这是前端code [WebMethod] //注意添加引用,方法为静态
Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 这个系列讲讲Python的科学计算版块 今天讲讲pandas...Part 2:代码 import pandas as pd dict_1 = {"quality_1": ["pos_1", "pos_2", "pos_3", "pos_4", "pos_5"],...("\n只取需要的数据:") df_2 = df[df["quality_1"].isin(list_1)] print(df_2) 代码截图 ?...Part 3:部分代码解读 df_2 = df[df["quality_1"].isin(list_1)]从代码中可以看出,是以quality_1列作为筛选条件的,取quality_1列值为["pos_..."])由字典创建DataFrame,并且指定了列的排序 传送门 【项目实战】自监控-06-DataFrame行列操作(上篇) 【项目实战】自监控-07-DataFrame行列操作(中篇) 【项目实战