首页
学习
活动
专区
圈层
工具
发布

Python-科学计算-pandas-24-创建空DF

今天讲讲pandas模块 生成一个空的df Part 1:场景描述 一些情况下需要对df进行操作,若这个df是中间计算出来,有可能是空字符串,这样后续的很多运算就会报错 其中的一个方法就是给其赋值一个空的...df Part 2:代码1 import pandas as pd df = pd.DataFrame(columns=['A', 'B', 'C', 'D']) print(df) if df.empty...: print("为空的df") print(type(df)) 代码截图 执行结果 Part 3:代码2 import pandas as pd df = pd.DataFrame...() print(df) if df.empty: print("为空的df") print(type(df)) 运行结果 Part 4:部分代码解读 代码1中设置了列名,对于一个空的...df来说,其实可以不需要列名 代码2中无列名,生成的空df更纯粹一点 注意两者的类型都是pandas.core.frame.DataFrame ---- 本文为原创作品,欢迎分享朋友圈

97610
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas查询数据df.query

    Pandas查询数据的简便方法df.query pandas中数据查询query函数 方法对比: 使用df[(df[“a”] > 3) & (df[“b”]<5)]的方式; 使用df.query...27 -5 -12 多云~晴 西北风 3级 48 优 1 复杂条件查询 注意,组合条件用&符号合并,每个条件判断都得带括号 ## 查询最高温度小于30度,并且最低温度大于15度,并且是晴天,并且天气为优的数据...可以简化查询 形式:DataFrame.query(expr, inplace=False, **kwargs) 其中expr为要返回boolean结果的字符串表达式 形如: df.query(‘a<100...02 2 -5 阴~多云 东北风 1-2级 49 优 1 2 2018-01-03 2 -5 多云 北风 1-2级 28 优 1 查询最高温度小于30度,并且最低温度大于15度,并且是晴天,并且天气为优的数据...## 查询最高温度小于30度,并且最低温度大于15度,并且是晴天,并且天气为优的数据 df.query("bWendu=15 & tianqi=='晴' & aqiLevel

    78220

    Pandas数据分组的函数应用(df.apply()、df.agg()和df.transform()、df.applymap())

    文章目录 apply()函数 介绍 样例 性能比较 apply() 数据聚合agg() 数据转换transform() applymap() 将自己定义的或其他库的函数应用于Pandas对象,有以下...) pandas.core.series.Series'> >>> df['score_math'].apply('mean') 86.33333333333333 >>> type...(df['score_math'].apply(np.mean)) pandas.core.series.Series'> #逐行求每个学生的平均分 >>> df.apply(np.mean...()的特例,可以对pandas对象进行逐行或逐列的处理; 能使用agg()的地方,基本上都可以使用apply()代替。...再将结果合并;整个DataFrame的函数输出可以是标量、Series或DataFrame;每个apply语句只能传入一个函数; agg可以通过字典方式指定特征进行不同的函数操作,每一特征的函数输出必须为标量

    3.1K10

    Python-科学计算-pandas-25-列表转df

    系统:Windows 11 编辑器:JetBrains PyCharm Community Edition 2018.2.2 x64 这个系列讲讲Python的科学计算及可视化 pandas模块 今天讲讲如何讲一个列表转换为...df Part 1:场景说明 我们在工作中可能需要对一些列表或者字典数据进行运算 当然我们可以通过循环判断一波处理得到想要的结果,但着实复杂低效 遇到这种计算问题,自然想到pandas这个非常好用的库...那我们只需要将需要处理的列表字典转换为pandas的df,这样后续处理就非常的高效了 Part 2: 代码 import pandas as pd list_1 = [{"a": 1, "b":...= pd.DataFrame(list_1) print("\ndf内容:") print(df.head(5)) 图1 代码截图 图2 执行结果 Part 3:部分代码说明 df = pd.DataFrame...(list_1),核心就是将该列表传给pd.DataFrame 观察执行结果,规律: 列表中的每一个元素是一个字典 每个字典的键是一样的,转换后对应df的列名 生成的df行索引采用自然数 本文为原创作品

    2.1K10

    Python-科学计算-pandas-26-列表转df-2

    系统:Windows 11 编辑器:JetBrains PyCharm Community Edition 2018.2.2 x64 这个系列讲讲Python的科学计算及可视化 pandas模块 今天讲讲如何将一个列表转换为...df Part 1:场景说明 我们在工作中可能需要对一些列表或者字典数据进行运算 当然我们可以通过循环判断一波处理得到想要的结果,但着实复杂低效 遇到这种计算问题,自然想到pandas这个非常好用的库...那我们只需要将需要处理的列表字典转换为pandas的df,这样后续处理就非常的高效了 上一篇文章列表内每个元素是一个字典,那么如果列表内的元素也是一个列表如何处理呢?...Part 2: 代码 import pandas as pd list_1 = [[1, 2, 3, 4], [2, 3, 4, 5], [6, 3, 8, 5]] print("\n列表内容:...) print("\ndf内容:") print(df) 图1 代码截图 图2 执行结果 Part 3:部分代码说明 df = pd.DataFrame(list_1, columns=list_column

    53120

    临时表创建_临时表的创建方式

    临时表创建 // An highlighted block 两种临时表的语法: create global temporary table 临时表名 on commit preserve|delete...rows 用preserve时就是SESSION级的临时表,用delete就是TRANSACTION级的临时表 一、SESSION级临时表 1、建立临时表 Sql代码 create global temporary...结束SESSION,重新登录,再查询数据select *from temp_tbl,这时候记录已不存在,因为系统在结束SESSION时自动清除记录 [1] 二、TRANSACTION级临时表 1、建立临时表...temp_tbl 这时候可以看到刚才插入的记录'test transaction table'已不存在了;同样,如果不提交而直接结束SESSION,重新登录记录也不存在 DoingNetDbContext这个地方加表名字...function (e) { alert("错误是:" + e.responseText); } }) } else { } } 这是前端code [WebMethod] //注意添加引用,方法为静态

    4.6K20

    Python-科学计算-pandas-01-df获取部分数据

    Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 这个系列讲讲Python的科学计算版块 今天讲讲pandas...Part 2:代码 import pandas as pd dict_1 = {"quality_1": ["pos_1", "pos_2", "pos_3", "pos_4", "pos_5"],...("\n只取需要的数据:") df_2 = df[df["quality_1"].isin(list_1)] print(df_2) 代码截图 ?...Part 3:部分代码解读 df_2 = df[df["quality_1"].isin(list_1)]从代码中可以看出,是以quality_1列作为筛选条件的,取quality_1列值为["pos_..."])由字典创建DataFrame,并且指定了列的排序 传送门 【项目实战】自监控-06-DataFrame行列操作(上篇) 【项目实战】自监控-07-DataFrame行列操作(中篇) 【项目实战

    1.2K30
    领券