我没有记住所有这些函数,但是作为参数的几乎所有pandas DataFrame函数都将以类似的方式运行。这意味着在处理它们时,您将能够应用本文将介绍的相同逻辑。...现在我们将演示dropna()函数如何使用inplace参数工作。因为我们想要检查两个不同的变体,所以我们将创建原始数据框架的两个副本。...如果您希望更新原始数据以反映已删除的行,则必须将结果重新分配到原始数据中,如下面的代码所示。...它直接改变原始数据框架,因此,如果需要改变原始数据,那么inplace=True是首选。 那么,为什么会有在使用inplace=True产生错误呢?...这个警告之所以出现是因为Pandas设计师很好,他们实际上是在警告你不要做你可能不想做的事情。该代码正在更改只有两列的dataframe,而不是原始数据框架。
对于结果行,整个序列化/反序列化过程在再次发生,以便实际的 filter() 可以应用于结果集。...GROUPED_MAP UDF是最灵活的,因为它获得一个Pandas数据帧,并允许返回修改的或新的。 4.基本想法 解决方案将非常简单。...在UDF中,将这些列转换回它们的原始类型,并进行实际工作。如果想返回具有复杂类型的列,只需反过来做所有事情。...除了转换后的数据帧外,它还返回一个带有列名及其转换后的原始数据类型的字典。 complex_dtypes_from_json使用该信息将这些列精确地转换回它们的原始类型。...作为最后一步,使用 complex_dtypes_from_json 将转换后的 Spark 数据帧的 JSON 字符串转换回复杂数据类型。
图 (8) 显示了输出结果。...图(8):序列的数据结构 绘制过程如图(9)所示: darts_str1.plot() 图(9):单变量的曲线图 Darts - 转换回 Pandas 如何将 Darts 数据集转换回 Pandas...输出结果是一个二维 Pandas 数据框: 不是所有的Darts数据都可以转换成二维Pandas数据框。...Gluonts - 转换回 Pandas 如何将 Gluonts 数据集转换回 Pandas 数据框。 Gluonts数据集是一个Python字典列表。...该库可用于执行单变量时间序列建模,需要使用Pandas数据框架,其中列名为['ds', 'y']。 这里加载了一个 Pandas 数据框 "bike" 来训练一个 Prophet 模型。
,适合将数值进行分类 qcut:和cut作用一样,不过它是将数值等间距分割 crosstab:创建交叉表,用于计算两个或多个因子之间的频率 join:通过索引合并两个dataframe stack: 将数据框的列...“堆叠”为一个层次化的Series unstack: 将层次化的Series转换回数据框形式 append: 将一行或多行数据追加到数据框的末尾 分组 聚合 转换 过滤 groupby:按照指定的列或多个列对数据进行分组...agg:对每个分组应用自定义的聚合函数 transform:对每个分组应用转换函数,返回与原始数据形状相同的结果 rank:计算元素在每个分组中的排名 filter:根据分组的某些属性筛选数据 sum...:绘制散点矩阵图 pandas.plotting.table:绘制表格形式可视化图 日期时间 to_datetime: 将输入转换为Datetime类型 date_range: 生成日期范围 to_timedelta...: 将输入转换为Timedelta类型 timedelta_range: 生成时间间隔范围 shift: 沿着时间轴将数据移动 resample: 对时间序列进行重新采样 asfreq: 将时间序列转换为指定的频率
标签:Python与Excel,pandas 对于Excel来说,删除行是一项常见任务。本文将学习一些从数据框架中删除行的技术。...inplace:告诉pandas是否应该覆盖原始数据框架。 按名称删除行 图2 我们跳过了参数axis,这意味着将其保留为默认值0或行。因此,我们正在删除索引值为“Harry Porter”的行。...还要注意.drop()方法还返回结果数据框架。现在是有趣的部分,让我们看看数据框架df,它并没有改变!这是因为我们忽略了参数inplace。...图3 如果要覆盖原始数据框架df,使用以下2种方法: 将结果数据框架赋值回原始df 在drop()方法内设置place=True 图4 按位置删除行 我们还可以使用行(索引)位置删除行。...这次我们将从数据框架中删除带有“Jean Grey”的行,并将结果赋值到新的数据框架。 图6
标签:Python,pandas 有时候,我们想要计算数据框架中行之间的差,可以使用dataframe.diff()方法,而不遍历行。...然而,pandas提供了一个简单得多的解决方案。 我们将使用下面的示例数据框架进行演示。假设有两种股票的价格:SPY和TSLA。...图1 pandas diff()语法 DataFrame.diff(periods= 1, axis = 0) 在pandas数据框架中计算行之间的差异 可以无须遍历行而计算出股票的日差价...从第二行开始,它基本上从原始数据框架的第二行获取值,然后减去原始数据框架第一行的值。例如405-400=5,400-200=200。...图5 计算两列之间的差 还可以通过将axis参数设置为1(或“columns”)来计算数据框架中各列之间的差异。pandas中的axis参数通常具有默认值0(即行)。
标签:Python,Pandas 本文介绍在pandas中如何找到与给定输入最接近的值。 有时候,我们试图使用一个值筛选数据框架,但是这个值不存在,这样我们会接收到一个空的数据框架,这不是我们想要的。...3.对上述第2步的结果进行排序,绝对差值最小的记录就是最接近输入值的记录。 下面显示了上述第2步的结果: 图2 接下来,可以对数据框架使用sort_values(),然后找到第一个(最低值的)条目。...pandas argsort()方法 argsort()方法返回将对值进行排序的整数索引。例如: 图3 看起来可能有点混乱,尤其是当看带有日期栏的排名时。...1.在右侧,原始数据框架(或绝对差数据框架,因为它们的索引相同)有一个数字索引0,1,2,3,4。...2.在左侧,忽略索引/日期列,argsort()按顺序返回数字索引 3.如果将此顺序应用于原始数据框架,正如下面几行所示,那么我们可以对数据框架进行排序: 值4(2022-05-08)行应该转到第一个位置
,本文主要涉及下面三个部分: Pandas数据处理 Matplotlib绘图 彩蛋:利用pyinstaller将py文件打包为exe ---- 虽然本文使用的数据(医学相关)不会出现在你平时的工作学习中...,但是处理的过程比如导入数据、缺失值处理、数据去重、计算、汇总、可视化、导出等操作却是重要的,甚至还教你如何将程序打包之后对于重复的工作可以一键完成!...绘制折线图 所以我们需要的结果应该是:在自己的桌面上建一个文件夹命名data,将原始数据data.xlsx放进去,之后运行完程序后文件夹会新增3个文件: ?...而这三个文件就是我们需要的结果 均值汇总表 ? 均值-标准差汇总表 ? 折线图 ? 现在我们就来讲解如何实现。...'{i + 1}'] = df['total'].str[i] df.drop(columns=['total'], inplace=True) 用匿名函数排序返回的是Series的升序列表,须有转换回
与Excel中的筛选类似,我们还可以在数据框架上应用筛选,唯一的区别是Python pandas中的筛选功能更强大、效率更高。...准备用于演示的数据框架 同样,我们使用原来用过的世界500强数据集。首先,我们将激活pandas并从百度百科加载数据。...基本引用如下所示: df.loc[column == ‘条件’] 图1 结果是一个新的数据框架,包含110家属于中国的公司。...此数据框架包括原始数据集中的所有列,我们可以将其作为一个独立的表(数据框架)使用,而不需要额外的步骤(例如,如果我们在Excel中进行筛选后,需要将其复制到另一个工作表或删除其他行以使其成为“一个表”)...在现实生活中,我们经常需要根据多个条件进行筛选,接下来,我们将介绍如何在pandas中进行一些高级筛选。
图1 2 6个实用的pandas小知识 2.1 Series与DataFrame的互转 很多时候我们计算过程中产生的结果是Series格式的,而接下来的很多操作尤其是使用「链式」语法时,需要衔接着传入DataFrame...格式的变量,这种时候我们就可以使用到pandas中Series向DataFrame转换的方法: 「利用to_frame()实现Series转DataFrame」 s = pd.Series([0, 1,...参数用于指定转换后的字段名 s = s.to_frame(name='列名') s 图2 顺便介绍一下单列数据组成的数据框转为Series的方法: 「利用squeeze()实现单列数据DataFrame转Series...sample()方法的本质功能是从原始数据中抽样行记录,默认为不放回抽样,其参数frac用于控制抽样比例,我们将其设置为1则等价于打乱顺序: df = pd.DataFrame({ 'V1':...中我们可以利用rank()方法计算某一列数据对应的排名信息,但在rank()中有参数method来控制具体的结果计算策略,有以下5种策略,在具体使用的时候要根据需要灵活选择: 「average」 在average
get_dummies Pandas库中同样有类似的操作,使用get_dummies也可以得到相应的特征 import pandas as pd df = pd.DataFrame([...label'].map(class_mapping) df 对整个DF使用get_dummies 将会得到新的列: pd.get_dummies(df) 标准化与归一化 标准化 同样我们都需要对原始数据进行处理...处理后的所有特征的值都会被压缩到 0到1区间上.这样做还可以抑制离群值对结果的影响....plt.legend(loc='upper left') plt.grid() plt.tight_layout() plot() plt.show() 我们将原始的和变换后都放到了同一个图上...,观察下结果吧!
使用多线程或分布式计算框架(如Dask)来加速加密和解密过程。选择性能更高的加密算法,如AES-GCM。3....在加密前将字符串转换为字节串,在解密后将其转换回字符串。4. 数据完整性验证问题描述:加密后的数据可能在传输或存储过程中被篡改,导致解密失败或数据不一致。...解决方法:确保在加密前将字符串转换为字节串(使用.encode()方法)。确保在解密后将字节串转换回字符串(使用.decode()方法)。...结论通过结合Pandas和其他加密库,我们可以轻松实现数据的加密与解密,从而保护敏感信息的安全。在实际应用中,需要注意密钥管理、性能优化、字符编码一致性以及数据完整性验证等问题。...希望本文能帮助大家更好地理解和应用数据加密技术,确保数据的安全性和隐私性。
图1 2 6个实用的pandas小知识 2.1 Series与DataFrame的互转 很多时候我们计算过程中产生的结果是Series格式的,而接下来的很多操作尤其是使用链式语法时,需要衔接着传入DataFrame...格式的变量,这种时候我们就可以使用到pandas中Series向DataFrame转换的方法: 利用to_frame()实现Series转DataFrame s = pd.Series([0, 1, 2...图3 2.2 随机打乱DataFrame的记录行顺序 有时候我们需要对数据框整体的行顺序进行打乱,譬如在训练机器学习模型时,打乱原始数据顺序后取前若干行作为训练集后若干行作为测试集,这在pandas...sample()方法的本质功能是从原始数据中抽样行记录,默认为不放回抽样,其参数frac用于控制抽样比例,我们将其设置为1则等价于打乱顺序: df = pd.DataFrame({ 'V1':...图11 2.6 使用rank()计算排名时的五种策略 在pandas中我们可以利用rank()方法计算某一列数据对应的排名信息,但在rank()中有参数method来控制具体的结果计算策略,有以下5
标签:Python与Excel,pandas 删除列也是Excel中的常用操作之一,可以通过功能区或者快捷菜单中的命令或者快捷键来实现。...上一篇文章,我们讲解了Python pandas删除数据框架中行的一些方法,删除列与之类似。然而,这里想介绍一些新方法。取决于实际情况,正确地使用一种方法可能比另一种更好。...如果要覆盖原始数据框架,则要包含参数inplace=True。 图2 del方法 del是Python中的一个关键字,可用于删除对象。我们可以使用它从数据框架中删除列。...注意,当使用del时,对象被删除,因此这意味着原始数据框架也会更新以反映删除情况。 图3 重赋值方法 也就是方括号法,但这不是真正的删除方法,而是重新赋值操作。但是,最终结果与删除相同。...实际上我们没有删除,而是创建了一个新的数据框架,其中只包含用户姓名、城市和性别,有效地“删除”了其他两列。然后,我们将新创建的数据框架赋值给原始数据框架以完成“删除操作”。注意代码中的双方括号。
编程应用、实战教程,不容错过 最近有需求,要将一个局域网Web数据平台迁移到线上,顺带着,本地服务使用的PostgreSQL也要替换成国内某云的MongoDB。...在这个页面里面,主要数据操作是从数据库中查询出原始数据,然后加载到Pandas的DataFrame中,接着在Pandas中进行各种数据处理,最后返回JSON数据给前端进行渲染。...数据库总的数据量为接近500万,最后的查询结果在3万左右。 对各个环节分别进行测试发现,主要的时间消耗在了从数据库读取数据,然后加载到Pandas这个过程中。...于是将这个过程专门提取出来,单独测试其消耗的时间。结果发现,使用MongoEngine进行数据查询,然后加载到Pandas中需要几十秒的时间: ?...使用list()对数据查询结果进行处理是将其加载到Pandas中的一个常规前置操作,相当于遍历查询集的结果并将每一条数据添加到一个列表中。
开发Pandas的初衷是为了方便进行金融数据分析,现在Pandas的功能越来越丰富,应用范围也越来越广,几乎所有需要做数据处理的地方都可以派上用场。...') print(data) print(type(data)) 下载的数据文件是600519.csv,将此文件放到代码同级目录下,读取的数据结果如下图。...pandas读取DataFrame数据时,如果数据行数和列数很多,会自动将数据折叠,中间的显示为“...”。...= data.T print("转置后形状:", data2.shape) 形状:(4726, 15) 转置后形状:(15, 4726) 4....可以看到,当同时设置“日期”和“股票代码”为行索引后,打印行索引的结果是MultiIndex(多重索引),而前面打印原始数据的行索引为Index。
: line = freader.readline() # do some work except StopIteration: break pandas...分块读 import pandas as pd reader = pd.read_csv(filename, iterator=True) # 每次读取size大小的块,返回的是dataframe...100000) data.columns = [str(i) for i in range(246)] arr.append(data) data = pd.concat(arr) # 计算原始数据大小...GB print(data.memory_usage().sum()/(1024**3)) # 将label的int64转变为int8 data['0'] = pd.to_numeric(data['0...后:1.8263GB,转float32后:0.9323GB,转category后:0.9037GB 可以发现修改类型后,内存的消耗大幅缩减了 参考 https://zhuanlan.zhihu.com/
转置数据 import pandas as pd df = pd.read_excel('movie.xlsx') #直接使用.T获得转置数据 print(df.T) #代码运行结果: 0...6.2.4 Pandas缺失值处理 有时候我们拿到的原始数据的质量并不好,有很多缺失值,这是很正常的情况。...(value=1)) #代码运行结果: 原始数据: a b c 0 1 4.0 7.0 1 2 NaN 8.0 2 3 7.0 NaN 删除缺失值: a b c...这是通过value_counts()方法可以统计出来的原始数据,如果作为数据分析的结果呈现出来,稍微有点生涩,后面我们可以使用matlab来绘制更直观的图表。...Sum()操作在实际应用场景中通过会用于按照月份或者年度统计销售额等等。
在Python中处理数据时,也可以将行插入到等效的数据框架中。 将行添加到数据框架中 pandas没有“插入”功能,我们不能在想象的工作表中右键单击一行,然后选择.insert()。...pandas内置函数不允许我们在特定位置插入行。内置方法只允许我们在数据框架的末尾添加一行(或多行),有两种方法:append和concat。它们的工作原理非常相似,因此这里将只讨论append。...参见第一行——原始数据框架还有一行索引为0。现在出现了一个问题,有两行的索引为0。如果我们选择索引0,我们将得到两行——原始第一行和新添加的行。在大多数情况下,这可能不是你的意图。...图4 你可能会说,这不是你想要的,并且你想在中间添加行,正好在原始数据框架的第三行之后。那么,定制的时候到了。...下面是一个简单的示例,注意,你应该处理用户输入的row_num原始数据框架的最大长度的情况。 图7 注:本文学习整理自pythoninoffice.com。
2.用pandas处理缺失的数据时,我们可根据情况选择用插值法和删除法。 2.5 练习 1.创建包含更多行和列的原始数据集。...: 3.将预处理后的数据集转换为张量格式。...9))) 输出结果: 3.11 练习 1.证明一个矩阵 的转置的转置是 ,即 。...2.给出两个矩阵 和 ,证明“它们转置的和”等于“它们和的转置”,即 。 3.给定任意方阵 , 总是对称的吗?为什么? 4.本节中定义了形状((2,3,4))的张量X。len(X)的输出结果是什么?...10.微分和积分是微积分的两个分支,其中微分在深度学习的优化问题中得到了广泛应用。 11.导数可以被理解为函数相对于其变量的瞬时变化率,同时是函数曲线的切线斜率。
领取专属 10元无门槛券
手把手带您无忧上云