将2015~2020的数据按照同样的操作进行处理,并将它们拼接成一张大表,最后将每一个title对应的表导出到csv,title写入到index.txt中。...##解决方案 朴素想法 最朴素的想法就是遍历一遍原表的所有行,构建一个字典,字典的每个key是title,value是两个list。...不断将原有数据放入其中,然后到时候直接遍历keys,根据两个list构建pd,排序后导出。 更python的做法 朴素想法应该是够用的,但是不美观,不够pythonic,看着很别扭。...于是我搜索了How to partition DataFrame by column value in pandas?...groupby听着就很满足我的需求,它让我想起了SQL里面的同名功能。 df.groupby('ColumnName').groups可以显示所有的列中的元素。
excelperfect 在下图1所示的工作簿Data.xlsx的工作表Sheet1中,存放着待使用的数据。 ?...图1 在下图2所示的工作簿GetData.xlsm中,根据列C中的数据,在上图1的工作簿Data.xlsx的列E中查找是否存在相应数据的单元格。 ?...图2 然后,将Data.xlsx中对应行的列I至列K单元格中的数据复制到GetData.xlsm相应的单元格中,如下图3所示。 ?...Set wksData =Workbooks("Data.xlsx").Sheets("Sheet1") '判断所选单元格是否在列C中 If ActiveCell.Column... 3 Then MsgBox ("请选择列C中的单元格或单元格区域.")
yhd-ExcelVBA根据条件查找指定文件的数据填写到当前工作表指定列 【问题】当我们要用一个表的数据来查询另一个表的数据时,我们常常是打开文件复制数据源表的数据到当前文件新建一个数据表,再用伟大的VLookup...【解决方法】个人感觉这样不够快,所以想了一下方法,设计出如下的东东 【功能与使用】 设置好要取“数据源”的文件路径 data_key_col = "B" data_item_col = "V"为数据源的...key列与item列 this**是当前的数据表的要的东东 Sub getFiledata_to_activesheet() Dim mydic As Object, obj As Object...设定初始数据====================================、 file = "F:\家Excel学习\yhd-Excel\yhd-Excel-VBA\yhd-ExcelVBA根据条件查找指定文件的数据填写到当前工作表指定列...\201908工资变动名册表.xls" file_sht = "工资变动名册" data_key_col = "B" data_item_col = "V" '===要取的数据的列
本次介绍pandas时间统计分析的一个高级用法--重采样。以下是内容展示,完整数据、代码和500页图文可戳《pandas进阶宝典V1.1.6》进行了解。...重采样指的是时间重采样,就是将时间序列从一个频率转换到另一个频率上,对应数据也跟着频率进行变化。比如时间序列数据是以天为周期的,通过重采样我们可以将其转换为按分钟、小时、周、月、季度等等的其他周期上。...根据转换的频率精度可分为向上采样和向下采样。...# 将时间类型索引重置,变为column列 df.reset_index(drop=False,inplace=True) # 通过参数on指定时间类型的列名,也可以实现重采样 df.resample(...根据rule参数含义码表,H代表小时的意思,12H也就是12小时。这是resample非常强大的地方,可以把采样定位的非常精确。 下面将天的时间频率转换为12小时的频率,并对新的频率分组后求和。
让pandas如此受欢迎的原因是它简洁、灵活、功能强大的语法。 这篇文章将会配合实例,讲解10个重要的pandas函数。其中有一些很常用,相信你可能用到过。...Query Query是pandas的过滤查询函数,使用布尔表达式来查询DataFrame的列,就是说按照列的规则进行过滤操作。...Cumsum Cumsum是pandas的累加函数,用来求列的累加值。...我们只知道当年度的值value_1、value_2,现在求group分组下的累计值,比如A、2014之前的累计值,可以用cumsum函数来实现。...Where Where用来根据条件替换行或列中的值。如果满足条件,保持原来的值,不满足条件则替换为其他值。默认替换为NaN,也可以指定特殊值。
import numpy as np import pandas as pd 1. Query 我们有时需要根据条件筛选数据,一个简单方法是query函数。...Pandas提供了一个易于使用的函数来计算加和,即cumsum。 如果我们只是简单使用cumsum函数,(A,B,C)组别将被忽略。...where函数首先根据指定条件定位目标数据,然后替换为指定的新数据。...Merge Merge()根据共同列中的值组合dataframe。考虑以下两个数据: ? 我们可以基于列中的共同值合并它们。设置合并条件的参数是“on”参数。 ?...Select_dtypes Select_dtypes函数根据对数据类型设置的条件返回dataframe的子集。它允许使用include和exlude参数包含或排除某些数据类型。
显示更多行 显示更多列 改变列宽 设置float列的精度 数字格式化显示 更改绘图方法 配置info()的输出 打印出当前设置并重置所有选项 1....同理,也可根据自己的习惯显示可显示的行数,比如10, 20.. pd.set_option('display.min_rows', 10) # pd.options.display.min_rows =...这个设置不影响底层数据,它只影响浮动列的显示。 5. 数字格式化显示 pandas中有一个选项display.float_formatoption可以用来格式化任何浮点列。...(100).cumsum()) data.plot() 7....('all') #重置所有设置选项 参考: [1] https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.set_option.html
类似需求在去年笔者刚接触pandas的时候也做过《利用Python统计连续登录N天或以上用户》,这里我们可以用同样的方法进行实现。...图2:akshare数据预览 由于我们只需要用到aqi,并按照国际标准进行优良与污染定级,这里简单做下数据处理如下:(后台直接回复0427获取的数据是处理后的数据哈) import pandas as...pd # 重置索引 aqi = air_quality_hist_df['aqi'].reset_index() # 将aqi列改为int类型 aqi.aqi = aqi.aqi.astype('int...= '污染': num += 1 groupids.append(num) last = v 我们根据这个逻辑可以得到辅助列数据如下: ?...图8:思路2的解法1结果 解法2:利用shift和cumsum创建辅助列 先创建空气质量的shift列,下移动一位 如果shift列和空气质量列相等,则判断列为0,否则为1 辅助列为判断列累加求和 ?
最近做可视化视频,在处理数据的时候遇到了一些问题。 所以就来总结一下,也给大家一个参考。 1. pandas.pivot_table 数据透视表,数据动态排布并且分类汇总的表格格式。...我的理解就是可以进行「行列转换」。 比如下面这样的一个转换。 ? 对名字列进行分类汇总,然后将日期那一列转换到行上,具体代码如下。...index=['name'], columns=['day'], fill_value=0).reset_index() # 输出表格 df_result.to_csv('result.csv') 2. pandas.Series.cumsum...DataFrame.apply 上面的cumsum函数是逐列进行累加的,如果需要总累加,那么便可以使用apply函数。 代码如下,axis可转换轴。...('20200224'))] print(df) 最后附上小F发现的一个网站——Pandas中文网。
具体来讲,第一篇文章一场pandas与SQL的巅峰大战涉及到数据查看,去重计数,条件选择,合并连接,分组排序等操作。...如何能按照月份分组求每组的累计百分比呢? 首先仍然是求累计金额,但要分月累计。在上面的基础上加上月份相等条件即可,从结果中可以看到,在11月和12月cum列是分别累计的。...pandas计算累计百分比 在pandas中,提供了专门的函数来计算累计值,分别是cumsum函数,expanding函数,rolling函数。...我们一起来看一下使用三种函数计算分组和不分组累计百分比的方法。 ? 1.不分组情况 cumsum函数 cumsum是pandas中专门用于计算累计和的函数。...直接对amt列使用cumsum函数即可计算累计值,结果和用SQL计算得到的一致。 计算累计的百分比也很容易。
Excel 中的实现方式直观简单 如下一份简单的记录表: - 需要根据这份数据,得到最长连续下雨天数是多少,是几号到几号 - 上图红框是一部分符合条件的,其中最长的红框是需要的结果 按照惯例,先看看如果在...为1,False 为0 - G列:累计求和,上图可直接看到 G2 单元格的公式,不多说了 - 注意看 G列 的内容,相当于根据 C列的内容,相同连续值被划分到一个独立的编号 - 接下来只需要条件筛选+...分组统计,即可简单求出结果 后面的条件筛选+分组不再用 Excel 操作了(因为操作比较麻烦) pandas 中的对应实现 现在关键是怎么在 pandas 中完成上述 Excel 中的操作,实际非常简单...= df.下雨) 相当于 Excel 操作中的 E列 - .cumsum() 相当于 Excel 操作中的 G列 接下来是分组统计,pandas 的分组其实不需要把辅助列加到 DataFrame 上的...: - 行4:筛选下雨的行的条件 - 行6:先对 df 过滤下雨的行,按 diff_nums 分组统计 - 结果是一下子统计出各个连续下雨的天数与日期范围 结果是需要得到其中 count 列的最大值的行
Pandas是python中最主要的数据分析库之一,它提供了非常多的函数、方法,可以高效地处理并分析数据。让pandas如此受欢迎的原因是它简洁、灵活、功能强大的语法。...这篇文章将会配合实例,讲解10个重要的pandas函数。其中有一些很常用,相信你可能用到过。还有一些函数出现的频率没那么高,但它们同样是分析数据的得力帮手。...Query Query是pandas的过滤查询函数,使用布尔表达式来查询DataFrame的列,就是说按照列的规则进行过滤操作。...Cumsum Cumsum是pandas的累加函数,用来求列的累加值。...Where Where用来根据条件替换行或列中的值。如果满足条件,保持原来的值,不满足条件则替换为其他值。默认替换为NaN,也可以指定特殊值。
今天我们重新盘点66个Pandas函数合集,包括数据预览、数值数据操作、文本数据操作、行/列操作等等,涉及“数据清洗”的方方面面。...数据清洗时,会将带空值的行删除,此时DataFrame或Series类型的数据不再是连续的索引,可以使用reset_index()重置索引。...数据筛选 如果是筛选行列的话,通常有以下几种方法: 有时我们需要按条件选择部分列、部分行,一般常用的方法有: 操作 语法 返回结果 选择列 df[col] Series 按索引选择行 df.loc[label...——累加cumsum()。...df["累计销量"] = df["销量"].cumsum() 输出: 注:cumprod()方法是指连乘,用于与连加一样,但使用频率较少。
,而iloc访问的是序号 df.loc['a'] df.loc['a','ints'] df.iloc[2] df.iloc[2,1] 重置 DataFrame 的索引 可以用 .reset_index...()把DataFrame的索引重置为[0,1,2…]。...与numpy的转换 用pandas虽然方便,但pandas确实太难了,在某些应用中,可以把pandas转成numpy进行相互转换,提高处理速度和易操作性。...() df.describe() np.sqrt(df) df.cumsum().plot(lw=2.0) #可直接画图 把pandas转成numpy np2 = np.array(df) >>array...读取csv文件的方式: data = pd.read_csv(‘data.csv’) 导出成csv文件: data.to_csv(‘new.csv’) 如果把一个文件先读进来在写入到另一个文件,会发现两个文件大小不一样
让我们做另一个使用索引而不是标签的示例。 df.iloc [missing_index,-1] = np.nan "-1"是最后一列Exit的索引。...8.删除缺失值 处理缺失值的另一种方法是删除它们。“已退出”列中仍缺少值。以下代码将删除缺少任何值的行。...df.isna().sum().sum() --- 0 9.根据条件选择行 在某些情况下,我们需要适合某些条件的观察值(即行)。例如,下面的代码将选择居住在法国并且已经流失的客户。...第一个参数是位置的索引,第二个参数是列的名称,第三个参数是值。 19.where函数 它用于根据条件替换行或列中的值。默认替换值是NaN,但我们也可以指定要替换的值。...符合指定条件的值将保持不变,而其他值将替换为指定值。 20.排名函数 它为这些值分配一个等级。让我们创建一个根据客户余额对客户进行排名的列。
mean() 函数计算的是所有元素的平均值(除去 np.NaN)。cumsum() 函数计算的是所有元素的累计和(除去 np.NaN)。...当 DataFrame 对象中既有数字的列也有非数字的列,在不设置参数的情况下,describe() 会只对数字的列进行统计计算,例如:import numpy as npimport pandas as...(4)})print(frame.describe(include='all'))当 include 参数的值为 all 时,计算所有列的统计信息,数字列按照数字列的规则,非数字列按照非数字列的规则。...排序5.1 按索引排序根据条件对数据集排序是很常见的一种操作,要对行或列索引进行排序(按字典顺序),可使用 sort_index 方法,它将返回一个已排序的新对象,例如:import numpy as...当对一个 DataFrame 对象进行排序时,你可能希望根据一个或多个列中的值进行排序。将一个或多个列的名字传递给 sort_values 的 by 选项即可达到该目的。
根据位置设置loc和iloc4.3 根据条件设置4.4 按行或列设置4.5 添加Series序列(长度必须对齐)4.6 设定某行某列为特定值4.7 修改一整行数据5.Pandas处理丢失数据5.1 创建含...NaN的矩阵5.2 删除掉有NaN的行或列5.3 替换NaN值为0或者其他5.4 是否有缺失数据NaN6.Pandas导入导出6.1 导入数据6.2 导出数据7.Pandas合并操作7.1 Pandas...依据index合并7.2.6 解决overlapping的问题8.Pandas plot出图9.学习来源 0.导语 Pandas是基于Numpy构建的,让Numpy为中心的应用变得更加简单。...2018-08-23 12 13 14 15 2018-08-24 16 17 18 19 2018-08-25 20 21 22 23 ''' 4.3 根据条件设置...# 根据条件设置 # 更改B中的数,而更改的位置取决于4的位置,并设相应位置的数为0 df.B[df.A>4] = 0 print(df) ''' A B C
label1, label2, label3]] # 通过整数索引选择单行 df.iloc[index] # 通过整数索引选择多行 df.iloc[start_index:end_index] # 根据条件过滤行...] # 根据条件选择数据框中的行和列 df.loc[df['column_name'] > 5, ['column_name1', 'column_name2']] / 04 / 数据清洗 数据清洗是数据预处理阶段的重要步骤...# 根据条件过滤行 df_filtered = df[df['column_name'] > 5] # 按单列对DataFrame进行排序 df_sorted = df.sort_values('column_name...False]) # 按单列对DataFrame进行分组并计算另一列的平均值 grouped_data = df.groupby('column_name')['other_column'].mean...() # 按多列对DataFrame进行分组并计算另一列的总和 grouped_data = df.groupby(['column_name1', 'column_name2'])['other_column
3、基本的索引和切片 (1)元素索引、根据元素在数组中的位置来进行索引。...还有abs、exp、sin、cos、log、sum、mean(算术平均数)、cumsum(所有元素的累计和)、cumprod(所有元素的累计积)、sort(将元素进行排序)等函数。...(索引相同的进行算数运算,索引不同的被赋予空值) 4、排序和排名 根据某种条件对数据集进行排序。...(列从0开始计数) 6、汇总和计算描述统计 就是针对数组进行常用的数学和统计运算。大部分都属于约简和汇总统计。 其中有求和(sum)运算、累计(cumsum)运算、平均值(mean)等运算。...相当于Excel中vlookup函数的多条件查找中的多条件。 对于层次化索引对象,选取数据的方式可以通过内层索引,也可以通过外层索引来选取,选取方式和单层索引选取的方式一致。
领取专属 10元无门槛券
手把手带您无忧上云