首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

PHP数据结构(五) ——数组的压缩与转置

PHP数据结构(五)——数组的压缩与转置 (原创内容,转载请注明来源,谢谢) 1、数组可以看作是多个线性表组成的数据结构,二维数组可以有两种存储方式:一种是以行为主序,另一种是以列为主序。...对于排序,可以通过从0开始扫描原数组的列,并将结果相应放入新数组的行。也可以采用下述的快速转置法。...快速转置数组算法: 假设原矩阵为M,新矩阵为T,引入两个新的数组,数组num[col]为第col列非零元的个数,cpot[col]为第col列第一个非零元在新矩阵T生成的三元组顺序表的位置。...在转置前,先通过原矩阵M获取这两个数组,用于快速转换的计算。 PHP快速转置稀疏矩阵的源码如下: <?...php //快速转置稀疏矩阵 //根据原标准三元数组获取每一列非零元个数及第一个非零元的位置 /* 输入要求 array( 0=>array(0,1,33), 1=>

2.2K110

这应该是性能最优的数组转树结构方法

前端使用树插件是一个非常常见的使用场景。树插件的数据格式在我使用过的插件都是一样的。而这个数据格式是由后端组装好返回给前端还是前端自己组装,这个问题在前端和后端也经常拿来撕逼。...大多数情况下后端会组装好,也有一部分前端自己处理,早之前我合作过的一个后端提出了一个观点, 浏览器是每一个用户都有的,服务器是所有用户共同访问的,后端递归遍历组装树数据比前端处理更耗费性能。...那时候我居然无言以对,几十条数据组装成树结构的数据居然能牵扯到服务器性能问题,那这个服务器还能做什么?...现在网上数组转树结构的方法很多,都能够得到想要的结果,今天分享这个方法,我认为应该是性能最优的: let arr = [ {id: 1, name: '部门1', pid: 0},...,每一个id都有自己的children和本身的数据, 把属于这个id的pid项都存入children数组,因为json的map都是对象,浅拷贝下, 只要是属于这个对象的children数组都会是同一个。

31720
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【数据结构】对比数组链表我发现二叉树的好

    前言 觉得文章有帮助的话,麻烦随手留下点赞收藏吧,关注小冷看更多干货学习文章 ★ 这里是小冷的博客 ✓ 优质技术好文见专栏 个人公众号,分享一些技术上的文章,以及遇到的坑 当前系列:数据结构系列...源代码 git 仓库 数据结构代码地址 代码Git 仓库地址 目录 、 前言 二叉树简介 数组 链表 二叉树 认识树结构 二叉树遍历的说明 二叉树遍历应用实例(前序,中序,后序) 二叉树遍历代码实例...二叉树查找思路 二叉树查找代码示例 二叉树-删除节点 有关二叉树的,遍历,查找,删除的全代码 二叉树简介 为什么需要树这种数据结构 ?...4.如果该二叉树的所有叶子节点都在最后一层或者倒数第二层,而且最后一层的叶子节点在左边连续,倒数二 层的叶子节点在右边连续,我们称为完全二叉树 数组 数组存储方式的分析 优点:通过下标方式访问元素...),既可以保证数据的检索速度,同时也 可以保证数据的插入,删除,修改的速度 案例: [7, 3, 10, 1, 5, 9, 12] 认识树结构 树的常用术语(结合示意图理解: 1) 节点

    36330

    独家 | PySpark和SparkSQL基础:如何利用Python编程执行Spark(附代码)

    通过名为PySpark的Spark Python API,Python实现了处理结构化数据的Spark编程模型。 这篇文章的目标是展示如何通过PySpark运行Spark并执行常用函数。...接下来将举例一些最常用的操作。完整的查询操作列表请看Apache Spark文档。...10、缺失和替换值 对每个数据集,经常需要在数据预处理阶段将已存在的值替换,丢弃不必要的列,并填充缺失值。pyspark.sql.DataFrameNaFunction库帮助我们在这一方面处理数据。...通过使用.rdd操作,一个数据框架可被转换为RDD,也可以把Spark Dataframe转换为RDD和Pandas格式的字符串同样可行。...# End Spark Session sc.stop() 代码和Jupyter Notebook可以在我的GitHub上找到。 欢迎提问和评论!

    13.7K21

    【Python】PySpark 数据输入 ① ( RDD 简介 | RDD 中的数据存储与计算 | Python 容器数据转 RDD 对象 | 文件文件转 RDD 对象 )

    分布式计算引擎 ; RDD 是 Spark 的基本数据单元 , 该 数据结构 是 只读的 , 不可写入更改 ; RDD 对象 是 通过 SparkContext 执行环境入口对象 创建的 ; SparkContext...二、Python 容器数据转 RDD 对象 1、RDD 转换 在 Python 中 , 使用 PySpark 库中的 SparkContext # parallelize 方法 , 可以将 Python...print("RDD 元素: ", rdd.collect()) 完整代码示例 : # 创建一个包含列表的数据 data = [1, 2, 3, 4, 5] # 将数据转换为 RDD 对象 rdd...2, 3, 4, 5] 再后 , 并使用 parallelize() 方法将其转换为 RDD 对象 ; # 将数据转换为 RDD 对象 rdd = sparkContext.parallelize(data...) # 创建一个包含列表的数据 data = [1, 2, 3, 4, 5] # 将数据转换为 RDD 对象 rdd = sparkContext.parallelize(data) # 打印 RDD

    49210

    别说你会用Pandas

    这两个库使用场景有些不同,Numpy擅长于数值计算,因为它基于数组来运算的,数组在内存中的布局非常紧凑,所以计算能力强。但Numpy不适合做数据处理和探索,缺少一些现成的数据处理函数。...PySpark提供了类似Pandas DataFrame的数据格式,你可以使用toPandas() 的方法,将 PySpark DataFrame 转换为 pandas DataFrame,但需要注意的是...PySpark处理大数据的好处是它是一个分布式计算机系统,可以将数据和计算分布到多个节点上,能突破你的单机内存限制。....appName("Big Data Processing with PySpark") \ .getOrCreate() # 读取 CSV 文件 # 假设 CSV 文件名为...,并对它们应用一些函数 # 假设我们有一个名为 'salary' 的列,并且我们想要增加它的值(仅作为示例) df_transformed = df.withColumn("salary_increased

    12810

    PySpark UD(A)F 的高效使用

    利用to_json函数将所有具有复杂数据类型的列转换为JSON字符串。因为Arrow可以轻松处理字符串,所以可以使用pandas_udf装饰器。...在UDF中,将这些列转换回它们的原始类型,并进行实际工作。如果想返回具有复杂类型的列,只需反过来做所有事情。...这意味着在UDF中将这些列转换为JSON,返回Pandas数据帧,并最终将Spark数据帧中的相应列从JSON转换为复杂类型 [2enpwvagkq.png] 5.实现 将实现分为三种不同的功能: 1)...Spark数据帧转换为一个新的数据帧,其中所有具有复杂类型的列都被JSON字符串替换。...带有这种装饰器的函数接受cols_in和cols_out参数,这些参数指定哪些列需要转换为JSON,哪些列需要转换为JSON。只有在传递了这些信息之后,才能得到定义的实际UDF。

    19.7K31

    【数据结构】数组和字符串(六):特殊矩阵的压缩存储:稀疏矩阵——压缩稀疏列(Compressed Sparse Column,CSC)

    4.2.1 矩阵的数组表示 【数据结构】数组和字符串(一):矩阵的数组表示 4.2.2 特殊矩阵的压缩存储   矩阵是以按行优先次序将所有矩阵元素存放在一个一维数组中。...对角矩阵的压缩存储 【数据结构】数组和字符串(二):特殊矩阵的压缩存储:对角矩阵——一维数组 b~c....通过这种方式,CSC格式将稀疏矩阵的非零元素按列进行存储,并通过列指针数组和行索引数组提供了对非零元素在矩阵中位置的快速访问。...然后,根据列索引找到对应列的起始位置,将元素的行索引、列索引和值分别赋给对应的矩阵元素,并更新 row_indices 数组和 col_ptr 数组中的值。...通过遍历非零元素数组,将值、行索引和列索引分别赋给对应的矩阵元素,并更新 row_indices 数组和 col_ptr 数组中的值。

    16910

    PySpark SQL——SQL和pd.DataFrame的结合体

    Column:DataFrame中每一列的数据抽象 types:定义了DataFrame中各列的数据类型,基本与SQL中的数据类型同步,一般用于DataFrame数据创建时指定表结构schema functions...:这是PySpark SQL之所以能够实现SQL中的大部分功能的重要原因之一,functions子类提供了几乎SQL中所有的函数,包括数值计算、聚合统计、字符串以及时间函数等4大类,后续将专门予以介绍...03 DataFrame DataFrame是PySpark中核心的数据抽象和定义,理解DataFrame的最佳方式是从以下2个方面: 是面向二维关系表而设计的数据结构,所以SQL中的功能在这里均有所体现...DataFrame既然可以通过其他类型数据结构创建,那么自然也可转换为相应类型,常用的转换其实主要还是DataFrame=>rdd和DataFrame=>pd.DataFrame,前者通过属性可直接访问...,返回值是一个调整了相应列后的新DataFrame # 根据age列创建一个名为ageNew的新列 df.withColumn('ageNew', df.age+100).show() """ +---

    10K20

    Spark调研笔记第4篇 – PySpark Internals

    大家好,又见面了,我是全栈君。 事实上。有两个名为PySpark的概念。一个是指Sparkclient内置的pyspark脚本。...而还有一个是指Spark Python API中的名为pyspark的package。 本文仅仅对第1个pyspark概念做介绍。 1..../bin/pyspark时传入要运行的python脚本路径,则pyspark是直接调用spark-submit脚本向spark集群提交任务的;若调用....数据流交互结构例如以下图所看到的: 由上图可知,用户提交的Python脚本中实现的RDD transformations操作会在本地转换为Java的PythonRDD对象。.../bin/pyspark时,sparkclient和集群节点之间的内部结构。 理解这些内容有助于我们从整体上加深对Spark这个分布式计算平台的认识。 比如,当调用rdd.collect()时。

    76620

    独家 | 一文读懂PySpark数据框(附实例)

    本文中我们将探讨数据框的概念,以及它们如何与PySpark一起帮助数据分析员来解读大数据集。 数据框是现代行业的流行词。...在本文中,我将讨论以下话题: 什么是数据框? 为什么我们需要数据框? 数据框的特点 PySpark数据框的数据源 创建数据框 PySpark数据框实例:国际足联世界杯、超级英雄 什么是数据框?...接下来让我们继续理解到底为什么需要PySpark数据框。 为什么我们需要数据框? 1. 处理结构化和半结构化数据 数据框被设计出来就是用来处理大批量的结构化或半结构化的数据。...数据框结构 来看一下结构,亦即这个数据框对象的数据结构,我们将用到printSchema方法。这个方法将返回给我们这个数据框对象中的不同的列信息,包括每列的数据类型和其可为空值的限制条件。 3....到这里,我们的PySpark数据框教程就结束了。 我希望在这个PySpark数据框教程中,你们对PySpark数据框是什么已经有了大概的了解,并知道了为什么它会在行业中被使用以及它的特点。

    6K10

    我攻克的技术难题:大数据小白从0到1用Pyspark和GraphX解析复杂网络数据

    从零开始在本文中,我们将详细介绍如何在Python / pyspark环境中使用graphx进行图计算。...为了方便那些刚入门的新手,包括我自己在内,我们将从零开始逐步讲解。安装Spark和pyspark如果你只是想单独运行一下pyspark的演示示例,那么只需要拥有Python环境就可以了。...安装pyspark包pip install pyspark由于官方省略的步骤还是相当多的,我简单写了一下我的成功演示示例。...要使用Python / pyspark运行graphx,你需要进行一些配置。接下来的示例将展示如何配置Python脚本来运行graphx。...首先,让我来详细介绍一下GraphFrame(v, e)的参数:参数v:Class,这是一个保存顶点信息的DataFrame。DataFrame必须包含名为"id"的列,该列存储唯一的顶点ID。

    52220

    【PySpark入门】手把手实现PySpark机器学习项目-回归算法

    让我们从一个列中选择一个名为“User_ID”的列,我们需要调用一个方法select并传递我们想要选择的列名。...select方法将显示所选列的结果。我们还可以通过提供用逗号分隔的列名,从数据框架中选择多个列。...将分类变量转换为标签 我们还需要通过在Product_ID上应用StringIndexer转换将分类列转换为标签,该转换将标签的Product_ID列编码为标签索引的列。...直观上,train1和test1中的features列中的所有分类变量都被转换为数值,数值变量与之前应用ML时相同。我们还可以查看train1和test1中的列特性和标签。...在接下来的几周,我将继续分享PySpark使用的教程。同时,如果你有任何问题,或者你想对我要讲的内容提出任何建议,欢迎留言。

    8.1K51
    领券