Series 的 plot 方法直接调用的就是 matplotlib(最基础,最实用的绘图库) 的标准接口,实际上从该方法的设计初衷就可以发现,它就是为了简化使用 Pandas 进行数据处理时候对数据的可视化分析...x轴使用对数刻度 logy y轴使用对数刻度 loglog x,y轴都使用对数刻度 xticks x轴刻度标签 yticks y轴刻度标签 xlim 横轴坐标刻度的取值范围 ylim 纵轴坐标刻度的取值范围...rot 改变刻度标签(xticks, yticks)的旋转度 fontsize 设置刻度标签(xticks, yticks)的大小 position 柱形图的柱子的位置设置 table 将数据以表格的形式展示出来...yerr 带误差线的柱形图 xerr 带误差线的柱形图 lable 列的别名,作用在图例上 secondary_y 双 y 轴,在右边的第二个 y 轴 mark_right 双 y 轴时,在图例中的列标签旁增加显示...构建一个时间序列 ? 折线图 ? 图例 ? ? 坐标轴刻度 ? 显示样式:网格,标题,画布,字体 ? 折线图线型 ?
绘制余弦曲线的代码在 Pycharm 中执行调用,执行的结果会弹出一个独立的桌面端图形界面。...② axes 表示画纸,如果画板足够大,我们可以在画板上放置多张画纸,而在 matplotlib 中画板就是 figure,所以在一个 figure 画板中可以放置多个 axes 画纸。...x) plt.plot(x, y) ax = plt.gca() # 将左边框设置为红色并指定宽度 ax.spines['left'].set_color('red') ax.spines['left...as plt x = np.linspace(-np.pi, np.pi, 300) y = np.cos(x) plt.plot(x, y) ax = plt.gca() # 设置左边框的位置...最常见的就是将坐标轴移动到数据的中心: import numpy as np import matplotlib.pyplot as plt x = np.linspace(-np.pi, np.pi
每个figure可以有一个或多个axes轴,每个axes轴通常由四条边(左、上、右、下)包围,称为spines。每一根spines上都可以装饰有主刻度和次刻度(可以指向内部或外部)、刻度标签和标签。...默认情况下,matplotlib只装饰左边和下面的spines边框。 Axis轴 有刻度的spines边线称为轴。水平的是x轴,垂直的是y轴。...每个轴每一个都是由一个spines轴线,主刻度、次刻度、主刻度标签、次刻度标签和一个轴标签组成。 Spines轴线 Spines是连接轴刻度线和数据区域边界的轴线。...同时设置横竖坐标轴上的网格线 ax.grid(color='r', linestyle='--', linewidth=1,alpha=0.3) # 单独设置X坐标轴上(垂直方向)的网格线...(左/下、右/上)or(主、副)刻度线 label1On,label2On : bool分别表表示是否显示axis轴的(左/下、右/上)or(主、副)刻度值 可以将每个 Matplotlib 对象都看成是子对象
这个函数可以在一个函数调用中就完成 x 轴和 y 轴范围的设置,传递一个[xmin, xmax, ymin, ymax]的列表参数即可: plt.plot(x, np.sin(x)) plt.axis(...标题和坐标轴标签是最简单的这类标签,Matplotlib 提供了函数用来方便的设置它们: plt.plot(x, np.sin(x)) plt.title("A Sine Curve") plt.xlabel...(x)); 这样我们就有两个子图表(上面的子图表没有 x 轴刻度),这两个子图表正好吻合:上面图表的底部是整个图表高度 50%位置,而下面图表的顶部也是整个图表的 50%位置(0.1+0.4)。...每个axes对象都有着属性xaxis和yaxis,表示 x 和 y 轴,其中包含着所有的属性用来指代轴的线、刻度和标签。 主要的和次要的刻度 在每个坐标轴上,都有主要的刻度和次要的刻度概念。...Matplotlib 会自己计算按照这个最大数量计算的刻度位置: # 对x和y轴设置刻度最大数量 for axi in ax.flat: axi.xaxis.set_major_locator(
这个函数可以在一个函数调用中就完成 x 轴和 y 轴范围的设置,传递一个[xmin, xmax, ymin, ymax]的列表参数即可: plt.plot(x, np.sin(x)) plt.axis(...标题和坐标轴标签是最简单的这类标签,Matplotlib 提供了函数用来方便的设置它们: plt.plot(x, np.sin(x)) plt.title("A Sine Curve") plt.xlabel...注意到在左边的图表中,默认的颜色阈值是包括了噪声的,因此整体的条纹形状都被噪声数据冲刷淡化了。而右边的图表,我们手动设置了颜色的阈值,并在绘制颜色条是加上了extend参数来表示超出阈值的数据。...每个axes对象都有着属性xaxis和yaxis,表示 x 和 y 轴,其中包含着所有的属性用来指代轴的线、刻度和标签。 主要的和次要的刻度 在每个坐标轴上,都有主要的刻度和次要的刻度概念。...我们看到每个主要刻度显示了一个大的标志和标签,而每个次要刻度显示了一个小的刻度标志没有标签。 这些刻度属性,位置和标签,都可以使用每个轴的formatter和locator对象进行个性化设置。
标题和坐标轴标签是最简单的这类标签,Matplotlib 提供了函数用来方便的设置它们: plt.plot(x, np.sin(x)) plt.title("A Sine Curve") plt.xlabel...最容易用来准备这种网格数据的是 np.meshgrid 函数,可以将两个一维的数组构造成一个二维的网格: x = np.linspace(0, 5, 50) y = np.linspace(0, 5,...(x)); 这样我们就有两个子图表(上面的子图表没有 x 轴刻度),这两个子图表正好吻合:上面图表的底部是整个图表高度 50%位置,而下面图表的顶部也是整个图表的 50%位置(0.1+0.4)。...每个 axes 对象都有着属性xaxis和yaxis,表示 x 和 y 轴,其中包含着所有的属性用来指代轴的线、刻度和标签。 (1)主要的和次要的刻度 在每个坐标轴上,都有主要的刻度和次要的刻度概念。...Matplotlib 会自己计算按照这个最大数量计算的刻度位置: # 对x和y轴设置刻度最大数量 for axi in ax.flat: axi.xaxis.set_major_locator(
这个函数可以在一个函数调用中就完成 x 轴和 y 轴范围的设置,传递一个[xmin, xmax, ymin, ymax]的列表参数即可: plt.plot(x, np.sin(x)) plt.axis(...标题和坐标轴标签是最简单的这类标签,Matplotlib 提供了函数用来方便的设置它们: plt.plot(x, np.sin(x)) plt.title("A Sine Curve") plt.xlabel...注意到在左边的图表中,默认的颜色阈值是包括了噪声的,因此整体的条纹形状都被噪声数据冲刷淡化了。而右边的图表,我们手动设置了颜色的阈值,并在绘制颜色条是加上了extend参数来表示超出阈值的数据。...这样我们就有两个子图表(上面的子图表没有 x 轴刻度),这两个子图表正好吻合:上面图表的底部是整个图表高度 50%位置,而下面图表的顶部也是整个图表的 50%位置(0.1+0.4)。...每个axes对象都有着属性xaxis和yaxis,表示 x 和 y 轴,其中包含着所有的属性用来指代轴的线、刻度和标签。 主要的和次要的刻度 在每个坐标轴上,都有主要的刻度和次要的刻度概念。
Matplotlib简介 Matplotlib 是 Python 从 Matlab 迁移过来的一个 2D 绘图库,它可以在各种平台上以各种硬拷贝格式和交互式环境生成出具有出版品质的图形,通过几行代码,...通过设置 backend 可以使得 Matplotlib 适应不同的应用场景,或者说输出形式,例如:Python 中的命令行模式下弹出的figure,图形界面的工具 wxPython中 嵌入的 Matplotlib...() 之类的绘图语句 Matplotlib基本用法 由于Matplotlib是第三方库,请先确保你的电脑上已经安装成功 Matplotlib 库; 一般有下面两种办法: 在命令行下输入: pip install...("-|>", size=1.0) #设置x、y轴上刻度显示方向 ax.axis["x"].set_axis_direction("top") ax.axis...# # 最后,设置x、y轴上刻度显示方向,对于x轴是刻度标签在上面还是下面,y轴则是刻度标签在左边还是右边。
开启网格线命令grid,使用字典的方式调节标题、坐标名大小颜色fontdict、在图形上添加图例 legend。 3、在一张子图中共用某条坐标轴、在两张子图中共用某条坐标轴。...在共享x轴时,两边y轴的零刻度是不一致的,这要结合你分析的数据及时改变,其命令如下: ax1.set_ylim(-1,5.5) ax2.set_ylim(5,30) xlim和ylim是用来设置坐标轴的范围的...在分析的这三十天气温时,因为没有任何一天低于10摄氏度,那为什么不将右边刻度从10开始设置呢?不信可修改来具体分析: ?...咋一看似乎还行,但是在气温折线刚开始的时候有一部分是比较低的,绘制图像的人当然知道气温其实都在10摄氏度以上,不过当别人读取图像时,第一感觉会参照左边的刻度,这样会使阅读者产生前几天气温比较低(在零下)...和上个教程的体系相比,y轴上在主刻度的基础上出现了副刻度。
Matplotlib是当前用于数据可视化的最流行的Python包之一,本文主要介绍数据可视化分析工具:Matplotlib。...Matplotlib提供了一个面向对象的API,有助于使用Python GUI工具包(如PyQt、WxPythonotTkinter)在应用程序中嵌入绘图。...:x轴名称 plt.ylabel:y轴名称 plt.xlim:x轴的范围 plt.ylim:y轴范围 plt.xticks:第一个参数为范围,数组类型;第二个参数是标签,第三个是控制标签 plt.yticks...在广告数据分析中,我们通常会根据散点图来分析两个变量之间的数据分布关系。散点图的主要参数及其说明如下。 x/y:X/Y轴数据。两者都是向量,而且必须长度相等。...x:数据源 height:bar的高度 width:bar的宽度,默认0.8 bottom:y轴的基准,默认0 align:x轴的位置,默认中间,edge表示将bar的左边与x对齐 color:bar颜色
matplotlib中提供了多种方法创建figure,其中属pyplot模块中的figure()方法最常用也最方便,下面我们来说说这个方法。...前两个参数分别表示到左边框和上边框的百分比距离 plt.plot() plt.show() ?...3 axis axis在matplotlib中是一种类似于坐标轴的概念,负责处理轴标签、刻度线、刻度标签、网格线的绘制。...3.1.3 设置坐标轴刻度位置 import matplotlib.ticker as ticker # Fixing random state for reproducibility np.random.seed...设置纵坐标范围 axes.spines['right'].set_color('none') #隐藏掉右边框线 axes.spines['top'].set_color('none') #隐藏掉左边框线
Axes(坐标域) 可以将它理解为一个单个画板, 一个Axes包含两个Axis(坐标轴)(在3D图中为三个Axis), 每个Axes都有 一个 title(方法: set_title()), 一个x-label...Axis(坐标轴) 这是一种类似数轴的对象。可以通过Axis以及Axis的方法设置坐标轴上刻度的样式和坐标轴上的值。刻度的位置由Locater对象决定, 刻度对应的值由Formatter对象决定。...Axis是一个数轴对象,它主要用于设置一个Axes里面的数据约束(即两个端点的值)和轴上的ticks(就是轴上的标记刻度)和tick-labels刻度的标签。...verbose: 设置matplotlib在执行期间信息输出,如silent、helpful、debug和debug-annoying。...]) #设置横纵坐标轴范围,这个在子图中被分解为下面两个函数 ax1.set_xlim(-5,5) #设置横轴范围,
Hunter 在 2002 年开始编写,提供了一个套面向绘图对象编程的 API 接口,能够很轻松地实现各种图像的绘制,并且它可以配合 Python GUI 工具(如 PyQt、Tkinter 等)在应用程序中嵌入图形...通常你可以独立的配置y轴的左边刻度以及右边的刻度,也可以独立地配置x轴的上边刻度以及下边的刻度。...轴刻度、网格线和标签的抽象基类。刻度标记轴上的位置。它们包含两行作为标记和两个标签;底部和顶部位置各一个’ . xaxis ‘)或用于左右位置(如果是’ . yaxis ')。...)¶ 在matplotlib中,要想设置绘制样式,最简单的方法是在绘制元素时单独设置样式。...,若是几个样式中涉及到同一个参数,右边的样式表会覆盖左边的值。
它们分别控制图表的范围、刻度位置、刻度标签等。其使用方式有以下两种: 调用时不带参数,则返回当前的参数值。例如,plt.xlim()返回当前的X轴绘图范围。 调用时带参数,则设置参数值。...因此,plt.xlim([0, 10])会将X轴的范围设置为0到10。 所有这些方法都是对当前或最近创建的AxesSubplot起作用的。...(1)设置标题、轴标签、刻度以及刻度标签 为了说明轴的自定义,我将创建一个简单的图像并绘制一段随机漫步: ? ?...要修改X轴的刻度,最简单的办法是使用set_xticks和set_xticklabels。前者告诉matplotlib要将刻度放在数据范围中的哪些位置,默认情况下,这些位置也就是刻度标签。...相比之下,非Web式的图形化开发工作在近几年中减慢了许多。Python以及其他数据分析和统计计算环境(如R)都是如此。
领取专属 10元无门槛券
手把手带您无忧上云