Python DataFrame如何根据列值选择行 1、要选择列值等于标量的行,可以使用==。...df.loc[df['column_name'].isin(some_values)] 将多个条件与&: df.loc[(df['column_name'] >= A) & (df['column_name...3、由于Python的运算符优先级规则,&绑定比=。 因此,最后一个例子中的括号是必要的。...没有括号 df['column_name'] >= A & df['column_name'] <= B 被解析为 df['column_name'] >= (A & df['column_name']...) <= B 以上就是Python DataFrame根据列值选择行的方法,希望对大家有所帮助。
Ext根据条件显示隐藏列 写在ExtonReady函数里面,并在表格成功渲染之后,可以添加判断是否隐藏或者显示某一列 /* 判断是否显示版本号一列 */ var showVersionFlag =
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.i...
问题描述 如下图的日期dataframe,需要把开始日期和结束日期拼接在一起 原dataframe 开始日期 结束日期 2020-08-03 2020-08-09 2020-08-10 2020-08-...16 2020-08-17 2020-08-23 2020-08-24 2020-08-30 2020-08-31 2020-09-06 拼接后的dataframe 开始日期 结束日期 插入日期 2020...lambda x:" ~ ".join(x.values),axis=1) 上面两种方法,原理基本一致 碰到Null值时,会报错,因为none不可与str运算 解决如下,加入if判断即可 df = pd.DataFrame...转成嵌套数组/列表 # 转换成嵌套数组 df.values np.array(df) #转换成嵌套列表 df.values.tolist() np.array(df).tolist() # 拼接 pd.DataFrame
这就要说到之前讲过的 逻辑运算中的短路求值: 条件 and 值1 or 值2 如果条件为False,它会触发and短路求值返回False,再进行or运算返回值2。...而如果条件为True,它会进行and运算返回值1,再触发or短路求值返回值1。 于是,就变相实现了一个单行的if-else结构。 其实在很多语言中,都有现成的类似语法,称作 条件赋值,常常是以 ?...条件 ? 值1 : 值2 如果问号前条件为真,则返回问号后的值,否则返回冒号的值。...Python中也有这种语法,同样以if-else作为关键字,但写法上略有不同: 值1 if 条件 else 值2 在非常非常早期的Python版本中,并不支持这种单行的if-else语法,所以会有人用...再回到我们前面说的原理上: 条件 and 值1 or 值2 如果条件为True,它会进行and运算返回值1。
设置index_col=0,目的是设置第一列name为index(索引),方便下面示例演示 data = pandas.read_csv(input1, index_col=0) 输出结果...162.50 49.99 2006 800 sofa 699.99 269.99 2002 3094 table 602.00 269.99 2002 3093 根据表头获取列数据...49.99 799 bed 49.99 795 lamp 49.99 800 sofa 269.99 3094 table 269.99 3093 根据列号读取列数据...name wood 85.00 49.99 2006 797 sofa 699.99 269.99 2002 3094 根据列号读取行数据...dataframe的具体标签选取列,而iloc是根据标签所在的位置,从0开始计数。
问题描述: 创建一个包含10行6列随机数的DataFrame,行标签从大写字母A开始,列标签从小写字母u开始。...然后从上向下遍历,如果某行u列的值比上一行u列的值大,就把该行x列的值改为上一行x列的值加1,否则保持原来的值不变。 参考代码: 运行结果:
上一次学习了一个拆分的方法, 2019-09-14文章 Python pandas依列拆分为多个Excel文件 还是用循环数据的方法来进行逐行判断并进行组合,再拆分。...总是感觉与VBA的差别不大,Python的强大功能没能体现出来。今天终于学习到了。...import pandas as pd data=pd.DataFrame(pd.read_excel('汇总.xlsx',header=1)) #读取Excel数据并转化为DataFrame,跳过第一行...,以第二行的数据的列名 bj_list=list(data['班别'].drop_duplicates()) #把“班别”一列进行删除重复项并存入到列表中 for i in bj_list: tempdata...tempdata.astype('str') tempdata.to_excel(str(i)+".xlsx",index=False) #由列表进行循环,把指定的班别所有的数据存入到一个temp的DataFrame
yhd-ExcelVBA根据条件查找指定文件的数据填写到当前工作表指定列 【问题】当我们要用一个表的数据来查询另一个表的数据时,我们常常是打开文件复制数据源表的数据到当前文件新建一个数据表,再用伟大的VLookup...【解决方法】个人感觉这样不够快,所以想了一下方法,设计出如下的东东 【功能与使用】 设置好要取“数据源”的文件路径 data_key_col = "B" data_item_col = "V"为数据源的...key列与item列 this**是当前的数据表的要的东东 Sub getFiledata_to_activesheet() Dim mydic As Object, obj As Object...设定初始数据====================================、 file = "F:\家Excel学习\yhd-Excel\yhd-Excel-VBA\yhd-ExcelVBA根据条件查找指定文件的数据填写到当前工作表指定列...时间为:" & Format(Timer - ti, "0.000秒") End Sub 完成时间,一个字“快”,比复制与vLookup快很多 ====个人学习收藏用的====
我们有时候需要将表单内的某列数据分到新的工作表里。...之后我们将按照班级分工作表 Step 1 Separate Excel Data into Workbooks by Column Values Using Python 1....(output_file_name, index=False) Step 2 Separate Excel Data into new sheets by Column Values - VBA 虽然Python...然后代码运行之后,会弹出第一个窗口,选择全部表头(标题){A1:D1} 第二个弹出框选择,除去标题的全部列。
知识回顾: 1、掌握序列解包x,y,z=1,2,3 2、掌握交换x,y=y,x 3、连续赋值 4、增量赋值 ---- 本节知识视频教程 以下开始文字讲解: 一、布尔类型 boolean 简写
首先定义了一个字典 data,其中键为 “label”,值为一个列表 [1, 2, 3, 4]。然后使用 pd.DataFrame (data) 将这个字典转换成了 DataFrame df。...values 属性返回 DataFrame 指定列的 NumPy 表示形式。...random_array = np.random.rand(4, 2) 此行代码使用 numpy 库生成一个形状为 4x2(即 4 行 2 列)的随机数数组。...结果是一个新的 NumPy 数组 arr,它将原始 DataFrame 中 “label” 列的值作为最后一列附加到了随机数数组之后。...运行结果如下: 总结来说,这段代码通过合并随机数数组和 DataFrame 中特定列的值,展示了如何在 Python 中使用 numpy 和 pandas 进行基本的数据处理和数组操作。
本文主要介绍pandas.DataFrame的三个接口,即assign、eval、query,分别用于赋值、查询和执行计算。 注:本文短平快,5分钟可完成阅读了解3个高效的接口。 ?...01 assign 在数据分析处理中,赋值产生新的列是非常高频的应用场景,简单的可能是赋值常数列、复杂的可能是由一列产生另外一个一列,对于这种需求pandas有多种方法实现,但个人唯独喜欢assign,...注意事项: assign赋值新列时,一般用新列名=表达式的形式,其中新列名为变量的形式,所以不加引号(加引号时意味着是字符串); assign返回创建了新列的dataframe,所以需要用新的dataframe...例如对于以上dataframe,需要根据不同场景查询满足条件的记录,调用query的实现方式为: ?...注意事项: query中也支持inplace参数,控制是否将查询过滤条件作用于dataframe本身; 与eval类似,query中也支持引用外部函数。
np.array会尝试为每一个新建的数组推断出适合它的数据类型。 arange是Python内置函数range的数组版。 2、数据类型 dtype是一个用来说明数组的数据类型的对象。...2、DataFrame (1)概念: DataFrame是一个表格型的数据结构,含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。...(3)获取DataFrame的值(行或列) 通过查找columns值获取对应的列。(下面两种方法) 通过索引字段ix查找相应的行。 (4)对列进行赋值处理。 对某一列可以赋一个标量值也可以是一组值。...也可以给某一列赋值一个列表或数组,其长度必须跟DataFrame长度相匹配。如果赋值的是一个Series,则对应的索引位置将被赋值,其他位置的值被赋予空值。...(索引相同的进行算数运算,索引不同的被赋予空值) 4、排序和排名 根据某种条件对数据集进行排序。
excel中的lookup 构造测试数据 import numpy as np import pandas as pd import random # 随机生成20名同学,语数外三科成绩 df = pd.DataFrame...40,100) for i in range(60)]).reshape(20,3),columns=["语文","数学","英语"]) df['总成绩'] = df.sum(axis=1) df 添加一列条件列...< 180 良 :180~ 240(含180不含240) 优 : >=240 这是一个excel学习中很经典的案例,先构造评级参数表,然后直接用lookup匹配就可以了,具体不在这讲了,今天讲一下用python...这个函数依次接受三个参数:条件;如果条件为真,分配给新列的值;如果条件为假,分配给新列的值 # np.where(condition, value if condition is true, value...,可选.指定分箱的标签 如果是数组,长度要与分箱个数一致,比如“ bins”=[1、2、3、4]表示(1,2],(2,3],(3,4]一共3个区间,则labels的长度也就是标签的个数也要是3 如果为False
DataFrame对象,赋值给data变量。...同样会生成一个布尔值的 Series,再用它从data中筛选出符合条件的行,赋值给filtered_data并打印。 基于条件筛选:在数据分析中,我们经常需要从数据中筛选出满足特定条件的行。...假设data.csv文件中有一列名为column_name,我们要筛选出这一列中值大于 10 的行: 多条件筛选:有时我们需要同时满足多个条件来筛选数据。...() data.dropna()会返回一个新的DataFrame,其中所有包含缺失值的行都被删除了,然后将这个新的DataFrame重新赋值给data变量。...0)会将data中所有的缺失值替换为 0,生成一个新的DataFrame并重新赋值给data。
前言:解决在Pandas DataFrame中插入一列的问题 Pandas是Python中重要的数据处理和分析库,它提供了强大的数据结构和函数,尤其是DataFrame,使数据处理变得更加高效和便捷。...不同的插入方法: 在Pandas中,插入列并不仅仅是简单地将数据赋值给一个新列。...可以进一步引入不同的插入方法,为读者提供更灵活和强大的工具,以满足各种数据处理需求: 1.使用函数应用: python Copy code import pandas as pd # 创建一个简单的DataFrame...在这个例子中,我们使用numpy的where函数,根据分数的条件判断,在’Grade’列中插入相应的等级。...在实际应用中,我们可以根据具体需求使用不同的方法,如直接赋值或使用assign()方法。 Pandas是Python中必备的数据处理和分析库,熟练地使用它能够极大地提高数据处理和分析的效率。
它类似于Python中的列表或数组,但提供了更多的功能和灵活性。我们可以使用Series来存储和操作单个列的数据。...每个值都有一个与之关联的索引,它们以0为起始。Series的数据类型由pandas自动推断得出。什么是DataFrame?...字典的键表示列名,对应的值是列表类型,表示该列的数据。我们可以看到DataFrame具有清晰的表格结构,并且每个列都有相应的标签,方便阅读访问和筛选数据我们可以使用索引、标签或条件来访问和筛选数据。...(df.iloc[0]) # 根据索引访问print(df.loc[0]) # 根据标签访问运行结果如下要根据条件筛选数据,可以使用布尔索引:要根据条件筛选数据,可以使用布尔索引:# 筛选数据filtered_df...例如,要添加一列数据,可以将一个新的Series赋值给DataFrame的一个新列名# 添加列df['Gender'] = ['Male', 'Female', 'Male', 'Female']print
~ 按行 用多个文件建立 DataFrame ~ 按列 从剪贴板创建 DataFrame 把 DataFrame 分割为两个随机子集 根据多个类别筛选 DataFrame 根据最大的类别筛选 DataFrame...这种方式的优点是可以重命名任意数量的列,一列、多列、所有列都可以。 还有一种简单的方式可以一次性重命名所有列,即,直接为列的属性赋值。 ?...根据多个类别筛选 DataFrame 预览 movies。 ? 查看 genre(电影类型)列。 ?...如果想反选,可在条件前添加一个波浪符(tilde ~)。 ? 14. 根据最大的类别筛选 DataFrame 筛选电影类别里(genre)数量最多的三类电影。...通过赋值语句,把这两列添加到原 DataFrame。 ? 如果想分割字符串,但只想保留分割结果的一列,该怎么操作? ? 要是只想保留城市列,可以选择只把城市加到 DataFrame 里。 ?
~ 按行 用多个文件建立 DataFrame ~ 按列 从剪贴板创建 DataFrame 把 DataFrame 分割为两个随机子集 根据多个类别筛选 DataFrame 根据最大的类别筛选 DataFrame...这种方式的优点是可以重命名任意数量的列,一列、多列、所有列都可以。 还有一种简单的方式可以一次性重命名所有列,即,直接为列的属性赋值。 ?...根据多个类别筛选 DataFrame 预览 movies。 ? 查看 genre(电影类型)列。 ?...如果想反选,可在条件前添加一个波浪符(tilde ~)。 ? 14. 根据最大的类别筛选 DataFrame 筛选电影类别里(genre)数量最多的三类电影。...把 Series 里的列表转换为 DataFrame 创建一个 DataFrame 示例。 ? 这里包含了两列,第二列包含的是 Python 整数列表。