首页
学习
活动
专区
圈层
工具
发布
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python精讲 | 条件赋值和and-or技巧

    这就要说到之前讲过的 逻辑运算中的短路求值: 条件 and 值1 or 值2 如果条件为False,它会触发and短路求值返回False,再进行or运算返回值2。...而如果条件为True,它会进行and运算返回值1,再触发or短路求值返回值1。 于是,就变相实现了一个单行的if-else结构。 其实在很多语言中,都有现成的类似语法,称作 条件赋值,常常是以 ?...条件 ? 值1 : 值2 如果问号前条件为真,则返回问号后的值,否则返回冒号的值。...Python中也有这种语法,同样以if-else作为关键字,但写法上略有不同: 值1 if 条件 else 值2 在非常非常早期的Python版本中,并不支持这种单行的if-else语法,所以会有人用...再回到我们前面说的原理上: 条件 and 值1 or 值2 如果条件为True,它会进行and运算返回值1。

    47710

    Python pandas按列拆分Excel为多个文件

    上一次学习了一个拆分的方法, 2019-09-14文章 Python pandas依列拆分为多个Excel文件 还是用循环数据的方法来进行逐行判断并进行组合,再拆分。...总是感觉与VBA的差别不大,Python的强大功能没能体现出来。今天终于学习到了。...import pandas as pd data=pd.DataFrame(pd.read_excel('汇总.xlsx',header=1)) #读取Excel数据并转化为DataFrame,跳过第一行...,以第二行的数据的列名 bj_list=list(data['班别'].drop_duplicates()) #把“班别”一列进行删除重复项并存入到列表中 for i in bj_list: tempdata...tempdata.astype('str') tempdata.to_excel(str(i)+".xlsx",index=False) #由列表进行循环,把指定的班别所有的数据存入到一个temp的DataFrame

    4.4K20

    yhd-ExcelVBA根据条件查找指定文件的数据填写到当前工作表指定列

    yhd-ExcelVBA根据条件查找指定文件的数据填写到当前工作表指定列 【问题】当我们要用一个表的数据来查询另一个表的数据时,我们常常是打开文件复制数据源表的数据到当前文件新建一个数据表,再用伟大的VLookup...【解决方法】个人感觉这样不够快,所以想了一下方法,设计出如下的东东 【功能与使用】 设置好要取“数据源”的文件路径 data_key_col = "B" data_item_col = "V"为数据源的...key列与item列 this**是当前的数据表的要的东东 Sub getFiledata_to_activesheet() Dim mydic As Object, obj As Object...设定初始数据====================================、 file = "F:\家Excel学习\yhd-Excel\yhd-Excel-VBA\yhd-ExcelVBA根据条件查找指定文件的数据填写到当前工作表指定列...时间为:" & Format(Timer - ti, "0.000秒") End Sub 完成时间,一个字“快”,比复制与vLookup快很多 ====个人学习收藏用的====

    2.4K20

    Python 数据处理 合并二维数组和 DataFrame 中特定列的值

    首先定义了一个字典 data,其中键为 “label”,值为一个列表 [1, 2, 3, 4]。然后使用 pd.DataFrame (data) 将这个字典转换成了 DataFrame df。...values 属性返回 DataFrame 指定列的 NumPy 表示形式。...random_array = np.random.rand(4, 2) 此行代码使用 numpy 库生成一个形状为 4x2(即 4 行 2 列)的随机数数组。...结果是一个新的 NumPy 数组 arr,它将原始 DataFrame 中 “label” 列的值作为最后一列附加到了随机数数组之后。...运行结果如下: 总结来说,这段代码通过合并随机数数组和 DataFrame 中特定列的值,展示了如何在 Python 中使用 numpy 和 pandas 进行基本的数据处理和数组操作。

    6.1K00

    Pandas用了一年,这3个函数是我最的最爱……

    本文主要介绍pandas.DataFrame的三个接口,即assign、eval、query,分别用于赋值、查询和执行计算。 注:本文短平快,5分钟可完成阅读了解3个高效的接口。 ?...01 assign 在数据分析处理中,赋值产生新的列是非常高频的应用场景,简单的可能是赋值常数列、复杂的可能是由一列产生另外一个一列,对于这种需求pandas有多种方法实现,但个人唯独喜欢assign,...注意事项: assign赋值新列时,一般用新列名=表达式的形式,其中新列名为变量的形式,所以不加引号(加引号时意味着是字符串); assign返回创建了新列的dataframe,所以需要用新的dataframe...例如对于以上dataframe,需要根据不同场景查询满足条件的记录,调用query的实现方式为: ?...注意事项: query中也支持inplace参数,控制是否将查询过滤条件作用于dataframe本身; 与eval类似,query中也支持引用外部函数。

    2.1K30

    Python数据分析笔记——Numpy、Pandas库

    np.array会尝试为每一个新建的数组推断出适合它的数据类型。 arange是Python内置函数range的数组版。 2、数据类型 dtype是一个用来说明数组的数据类型的对象。...2、DataFrame (1)概念: DataFrame是一个表格型的数据结构,含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。...(3)获取DataFrame的值(行或列) 通过查找columns值获取对应的列。(下面两种方法) 通过索引字段ix查找相应的行。 (4)对列进行赋值处理。 对某一列可以赋一个标量值也可以是一组值。...也可以给某一列赋值一个列表或数组,其长度必须跟DataFrame长度相匹配。如果赋值的是一个Series,则对应的索引位置将被赋值,其他位置的值被赋予空值。...(索引相同的进行算数运算,索引不同的被赋予空值) 4、排序和排名 根据某种条件对数据集进行排序。

    7.7K80

    五大方法添加条件列-python类比excel中的lookup

    excel中的lookup 构造测试数据 import numpy as np import pandas as pd import random # 随机生成20名同学,语数外三科成绩 df = pd.DataFrame...40,100) for i in range(60)]).reshape(20,3),columns=["语文","数学","英语"]) df['总成绩'] = df.sum(axis=1) df 添加一列条件列...< 180 良 :180~ 240(含180不含240) 优 : >=240 这是一个excel学习中很经典的案例,先构造评级参数表,然后直接用lookup匹配就可以了,具体不在这讲了,今天讲一下用python...这个函数依次接受三个参数:条件;如果条件为真,分配给新列的值;如果条件为假,分配给新列的值 # np.where(condition, value if condition is true, value...,可选.指定分箱的标签 如果是数组,长度要与分箱个数一致,比如“ bins”=[1、2、3、4]表示(1,2],(2,3],(3,4]一共3个区间,则labels的长度也就是标签的个数也要是3 如果为False

    2.7K20

    【如何在 Pandas DataFrame 中插入一列】

    前言:解决在Pandas DataFrame中插入一列的问题 Pandas是Python中重要的数据处理和分析库,它提供了强大的数据结构和函数,尤其是DataFrame,使数据处理变得更加高效和便捷。...不同的插入方法: 在Pandas中,插入列并不仅仅是简单地将数据赋值给一个新列。...可以进一步引入不同的插入方法,为读者提供更灵活和强大的工具,以满足各种数据处理需求: 1.使用函数应用: python Copy code import pandas as pd # 创建一个简单的DataFrame...在这个例子中,我们使用numpy的where函数,根据分数的条件判断,在’Grade’列中插入相应的等级。...在实际应用中,我们可以根据具体需求使用不同的方法,如直接赋值或使用assign()方法。 Pandas是Python中必备的数据处理和分析库,熟练地使用它能够极大地提高数据处理和分析的效率。

    5K10

    利用NumPy和Pandas进行机器学习数据处理与分析

    它类似于Python中的列表或数组,但提供了更多的功能和灵活性。我们可以使用Series来存储和操作单个列的数据。...每个值都有一个与之关联的索引,它们以0为起始。Series的数据类型由pandas自动推断得出。什么是DataFrame?...字典的键表示列名,对应的值是列表类型,表示该列的数据。我们可以看到DataFrame具有清晰的表格结构,并且每个列都有相应的标签,方便阅读访问和筛选数据我们可以使用索引、标签或条件来访问和筛选数据。...(df.iloc[0]) # 根据索引访问print(df.loc[0]) # 根据标签访问运行结果如下要根据条件筛选数据,可以使用布尔索引:要根据条件筛选数据,可以使用布尔索引:# 筛选数据filtered_df...例如,要添加一列数据,可以将一个新的Series赋值给DataFrame的一个新列名# 添加列df['Gender'] = ['Male', 'Female', 'Male', 'Female']print

    88320

    数据分析篇 | PyCon 大咖亲传 pandas 25 式,长文建议收藏

    ~ 按行 用多个文件建立 DataFrame ~ 按列 从剪贴板创建 DataFrame 把 DataFrame 分割为两个随机子集 根据多个类别筛选 DataFrame 根据最大的类别筛选 DataFrame...这种方式的优点是可以重命名任意数量的列,一列、多列、所有列都可以。 还有一种简单的方式可以一次性重命名所有列,即,直接为列的属性赋值。 ?...根据多个类别筛选 DataFrame 预览 movies。 ? 查看 genre(电影类型)列。 ?...如果想反选,可在条件前添加一个波浪符(tilde ~)。 ? 14. 根据最大的类别筛选 DataFrame 筛选电影类别里(genre)数量最多的三类电影。...通过赋值语句,把这两列添加到原 DataFrame。 ? 如果想分割字符串,但只想保留分割结果的一列,该怎么操作? ? 要是只想保留城市列,可以选择只把城市加到 DataFrame 里。 ?

    8.7K20

    Pandas 25 式

    ~ 按行 用多个文件建立 DataFrame ~ 按列 从剪贴板创建 DataFrame 把 DataFrame 分割为两个随机子集 根据多个类别筛选 DataFrame 根据最大的类别筛选 DataFrame...这种方式的优点是可以重命名任意数量的列,一列、多列、所有列都可以。 还有一种简单的方式可以一次性重命名所有列,即,直接为列的属性赋值。 ?...根据多个类别筛选 DataFrame 预览 movies。 ? 查看 genre(电影类型)列。 ?...如果想反选,可在条件前添加一个波浪符(tilde ~)。 ? 14. 根据最大的类别筛选 DataFrame 筛选电影类别里(genre)数量最多的三类电影。...把 Series 里的列表转换为 DataFrame 创建一个 DataFrame 示例。 ? 这里包含了两列,第二列包含的是 Python 整数列表。

    10K00
    领券