首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

python DataFrame数据生成

本文链接:https://blog.csdn.net/weixin_44580977/article/details/101986166 前言: DataFrame是一个表格型的数据结构,既有行索引...index也有列索引columns,创建DataFrame的基本方法为df = pd.DataFrame(data, index=index,columns=columns),其中data参数的数据类型可以支持由列表...行索引index在此处表示为交易日期,Pandas提供了强大的处理日期数据的功能,我们使用pandas.date_range()生成DatetimeIndex格式的日期序列,其中参数包括:起始时间start...’numpy.ndarray’,属于data参数支持的数据类型,于是我们将data、 index和columns三个参数传入创建DataFrame的方法中,就可以生成DataFrame格式的股票交易数据...以上就是Pandas的核心—DataFrame数据结构的生成讲解。

2K20

python 全方位访问DataFrame格式数据

可以访问DataFrame全部的行索引,DataFrame.columns可以访问DataFrame全部的列索引 我们用DataFrame.axes查看交易数据行和列的轴标签基本信息,DataFrame.axes...等价于DataFrame.index结合DataFrame.columns 2.行/列元素访问 DataFrame.values可以访问DataFrame全部元素数值,以numpy.ndarray数据类型返回...某列内容访问可以通过类似字典标记或属性的方式,比如DataFrame[‘Open’]或是DataFrame.Open方式,返回得到的’Open’列元素其实是Series数据结构(类似数组) 某行内容可以用切片式访问...,比如访问从索引0开始的第一行元素,我们使用DataFrame[0:1]方式,返回得到的元素是DataFrame数据结构 3.元素级的访问 元素级访问有三种: loc是通过标签方式选取数据,iloc是通过位置方式选取数据...0,2行和第一,二列元素 其实ix是更灵活的访问dataframe元素的方法,不过ix方法已经被Panads弃用了,使用时解释器会提示IX Indexer is Deprecated警告,我们只能使用

1.2K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    业界使用最多的Python中Dataframe的重塑变形

    : ndarray Values to use for populating new frame's values pivot函数将创建一个新表,其行和列索引是相应参数的唯一值 读取数据...======= color black blue red item Item1 None 2 1 Item2 4 None 3 将上述数据中的...因此,必须确保我们指定的列和行没有重复的数据,才可以用pivot函数 pivot_table方法实现了类似pivot方法的功能 它可以在指定的列和行有重复的情况下使用 我们可以使用均值、中值或其他的聚合函数来计算重复条目中的单个值...对于不用的列使用通的统计方法 使用字典来实现 df_nodmp5.pivot_table(index="ad_network_name",values=["mt_income","impression"...假设我们有一个在行列上有多个索引的DataFrame。

    2K10

    Python使用pandas扩展库DataFrame对象的pivot方法对数据进行透视转换

    Python扩展库pandas的DataFrame对象的pivot()方法可以对数据进行行列互换,或者进行透视转换,在有些场合下分析数据时非常方便。...DataFrame对象的pivot()方法可以接收三个参数,分别是index、columns和values,其中index用来指定转换后DataFrame对象的纵向索引,columns用来指定转换后DataFrame...对象的横向索引或者列名,values用来指定转换后DataFrame对象的值。...为防止数据行过长影响手机阅读,我把代码以及运行结果截图发上来: 创建测试用的DataFrame对象: ? 透视转换,指定index、columns和values: ?...透视转换,不指定values,但可以使用下标访问指定的values: ?

    2.5K40

    python 数据分析基础 day15-pandas数据框的使用获取方式1:使用DataFrame.loc

    今天是读《pyhton数据分析基础》的第15天,今天读书笔记的内容为使用pandas模块的数据框类型。 数据框(DataFrame)类型其实就是带标题的列表。...很多时候,整个数据框的数据并不会一次性的用于某一部的分析,而是选用某一列或几列的数据进行分析,此时就需要获取数据框的部分数据。...获取方式如下: 获取方式1:使用DataFrame.loc[] #调用某两行两列交汇的数据 #[index1,index2]表示引用索引号为index1和index2的两行数据 #[colName1,colName2...]表示引用列标题为colName1和colName2的列数据 DataFrame.loc[[index1,index2],[colName1,colName2]] 获取方式2:使用DataFrame.iloc...选取第四列和第五列 DataFrame.iloc[1:3,3:5] DataFrame.iloc[[1,2],[3,4]]

    1.7K110

    pandas | 使用pandas进行数据处理——DataFrame篇

    因为我们做机器学习或者是参加kaggle当中的一些比赛的时候,往往数据都是现成的,以文件的形式给我们使用,需要我们自己创建数据的情况很少。...所以总体来说,我们很少使用其他创建DataFrame的方法,我们有所了解,着重掌握从文件读取的方法即可。...转成numpy数组 有时候我们使用pandas不方便,想要获取它对应的原始数据,可以直接使用.values获取DataFrame对应的numpy数组: ?...所以在使用.values之前最好先查看一下类型,保证一下不会因为类型而出错。 总结 在今天的文章当中我们了解了DataFrame与Series的关系,也学习了一些DataFrame的基础和常用的用法。...在Python领域当中,pandas是数据处理最好用的手术刀和工具箱,希望大家都能将它掌握。

    3.5K10

    Django中使用下拉列表过滤HTML表格数据

    在Django中,你可以使用下拉列表(即选择框)来过滤HTML表格中的数据。这通常涉及两个主要步骤:创建过滤表单和处理过滤逻辑。创建过滤表单首先,你需要创建一个表单,用于接收用户选择的过滤条件。...这个表单可以使用Django的forms.Form类来定义,或者使用Django的ModelForm,具体取决于你是直接过滤模型数据还是对查询集进行过滤。...1、问题背景当使用 Django 进行 Web 开发时,我们在页面中经常需要使用 HTML 表格来展示数据。如果我们需要根据某些条件对表格中的数据进行过滤,可以使用下拉列表来实现。...当下拉列表的选项改变时,使用 Ajax 向服务器发送一个请求,服务器根据请求参数返回过滤后的数据。在 JavaScript 代码中,将服务器返回的数据更新到 HTML 表格中。...通过以上步骤,我们可以在Django中实现使用下拉列表来过滤HTML表格数据的功能。如有更多问题咨询可以留言讨论。

    11510

    如何使用Pulsar实现数据过滤和安全通信

    关于Pulsar  Pulsar是一款针对数据通信安全的强大工具,该工具可以帮助广大研究人员实现数据过滤和安全(隐蔽)通信,并通过使用各种不同的协议来创建安全的数据传输和聊天隧道。...在数据连接器的帮助下,我们可以使用Pulsar并从不同的数据源读取或写入数据。 命令行终端 默认的数据出入连接器,支持通过STDIN读取数据,通过STDOUT写入数据。...@127.0.0.1:1994 自定义配置 我们还可以使用--in参数来选择数据输入连接器,使用--out选项来选择数据输出连接器: --in tcp:127.0.0.1:9000 --out dns...:fkdns.lol:2.3.4.5:8989  数据处理器  数据处理器将允许我们在数据的传输过程中修改数据,我们也可以任意选择组合使用数据处理器。...--decode选项来使用所有数据处理器的解码模式: --handlers base64,base32,base64,cipher:key --decode  工具使用样例  在下列演示样例中,我们将使用

    1.2K20

    使用Trimmomatic对NGS数据进行质量过滤

    Trimmomatic 软件可以对NGS测序数据进行质量过滤,其去除adapter的功能只是针对illumina的序列,从reads的3’端识别adapter序列并去除,相比cutadapt,少了几分灵活性...但是在过滤低质量序列时,采用了滑动窗口的算法,给定窗口长度和步长,如果该窗口内所有碱基的平均质量值低于阈值,则将该窗口及其以后的碱基全部去除。...对于数据量很多的reads, 滑动窗口算法比cutadapt的算法运行速度更快。官网如下 http://www.usadellab.org/cms/?...对于单端测序数据,基本用法如下 java -jar trimmomatic-0.38.jar SE -phred33 input.fq.gz output.fq.gz ILLUMINACLIP:...TruSeq3-SE:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 对于双端测序数据,基本用法如下 java -jar trimmomatic

    3.2K20

    使用fastp对NGS数据进行质量过滤

    fastp是最近新出的一款NGS数据质量过滤工具,相比传统的QC工具,有两个主要特点,第一个就是运行速度快,第二个就是提供了质控前后数据详细统计结果。...对于单端数据,用-i参数指定输入的序列文件,-o参数指定输出的序列文件;对于双端数据,用-i和-I分别指定R1端和R2端的序列。 该软件可以对数据进行以下几种过滤 1....reads来推测adapter序列,虽然自动化预测对于使用者而言比较方便省心,但是预测的adaper序列可能不太准确,实际使用时,建议还是自己手动指定具体的adapter序列。...默认情况下,fastp不会去除polyX尾,可以添加-X参数,同时使用--poly_x_min_len指定polyX的最小长度,默认值都为10。 7....默认情况下,是不会根据序列复杂度进行过滤的,如果想要进行过滤,需要添加-Y参数,同时使用-y参数指定复杂度的阈值,取值范围0-100, 默认值为30,复杂度低于30%的序列会被过滤掉。 8.

    5.6K21
    领券