首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python Pandas中的Group by (多列连接,)

在 Pandas 中,groupby() 函数用于按一个或多个列对 DataFrame 进行分组。当使用多个列进行分组时,可以使用元组 (col1, col2, ...) 的形式来指定多个列。这样做可以将多个列的值组合在一起,形成唯一的组合,然后可以对这些组合进行聚合操作。

假设有一个 DataFrame df,其包含三列数据 A, B, C,如下所示:

代码语言:javascript
复制
   A   B   C
0  1   a  10
1  1   a  20
2  1   b  30
3  2   a  40
4  2   b  50

如果要对 AB 列进行分组,并计算每组的 C 列的平均值,可以使用以下代码:

代码语言:javascript
复制
grouped = df.groupby(('A', 'B'))['C'].mean()
print(grouped)

执行结果为:

代码语言:javascript
复制
A  B
1  a    15.0
   b    30.0
2  a    40.0
   b    50.0
Name: C, dtype: float64

注意,这里的 ('A', 'B') 是一个元组,表示对 AB 列进行分组。在聚合函数中,可以通过 ['C'] 来指定要聚合的列。

除了使用元组进行多列分组外,还可以使用列表实现类似的功能。例如:

代码语言:javascript
复制
grouped = df.groupby(['A', 'B'])['C'].mean()
print(grouped)

输出结果与之前相同。

总之,在 Pandas 中,使用元组或列表形式传递多个列名给 groupby() 函数即可实现多列分组。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

对比Excel,Python pandas删除数据框架

标签:Python与Excel,pandas 删除也是Excel常用操作之一,可以通过功能区或者快捷菜单命令或者快捷键来实现。...上一篇文章,我们讲解了Python pandas删除数据框架中行一些方法,删除与之类似。然而,这里想介绍一些新方法。取决于实际情况,正确地使用一种方法可能比另一种更好。...准备数据框架 创建用于演示删除数据框架,仍然使用前面给出“用户.xlsx”数据。 图1 .drop()方法 与删除行类似,我们也可以使用.drop()删除。...唯一区别是,在该方法,我们需要指定参数axis=1。下面是.drop()方法一些说明: 要删除单列:传入列名(字符串)。 删除:传入要删除名称列表。...图2 del方法 del是Python一个关键字,可用于删除对象。我们可以使用它从数据框架删除。 注意,当使用del时,对象被删除,因此这意味着原始数据框架也会更新以反映删除情况。

7.2K20

Pandas DataFrame 连接和交叉连接

连接 顾名思义,自连接是将 DataFrame 连接到自己连接。也就是说连接左边和右边都是同一个DataFrame 。自连接通常用于查询分层数据集或比较同一 DataFrame 行。...示例 1:查询分层 DataFrame 假设有以下表,它表示了一家公司组织结构。manager_id 引用employee_id ,表示员工向哪个经理汇报。...注:如果我们想排除Regina Philangi ,可以使用内连接"how = 'inner'" 我们也可以使用 pandas.merge () 函数在 Pandas 执行自连接,如下所示。...df_manager2 输出与 df_manager 相同。 交叉连接 交叉连接也是一种连接类型,可以生成两个或多个表中行笛卡尔积。它将第一个表行与第二个表每一行组合在一起。...总结 在本文中,介绍了如何在Pandas中使用连接操作,以及它们是如何在 Pandas DataFrame 执行。这是一篇非常简单入门文章,希望在你处理数据时候有所帮助。

4.2K20
  • 懂Excel就能轻松入门Python数据分析包pandas(十二):堆叠

    > 经常听别人说 Python 在数据领域有厉害,结果学了很长时间,连数据处理都麻烦得要死。...后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 Excel 是奇葩不规范数据重灾区,这主要是因为他有高度灵活性,今天来看看一个堆叠问题。...现在来看看,在 pandas 怎么简单转换成规范2数据: - 第一句主要是为了最后结果标题与原数据标题一致而已 - 关键是第二句,这里直接使用 numpy reshape 方法,即可完成需求...- .reshape(-1,2) ,其中2就是2,而 -1 是让 numpy 你根据数据来计算最终行数 - 第三句,只是把结果数组变为一个 DataFrame - 至于最后 dropna ,...用 pandas 不就是为了既可自动化处理,又可以少写点代码吗 总结 - numpy reshape 方法,可以快速把数组转换成指定行数或数 - 用 -1 可以让 numpy 自动计算行或数量

    71610

    懂Excel就能轻松入门Python数据分析包pandas(十二):堆叠

    > 经常听别人说 Python 在数据领域有厉害,结果学了很长时间,连数据处理都麻烦得要死。...后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 Excel 是奇葩不规范数据重灾区,这主要是因为他有高度灵活性,今天来看看一个堆叠问题。...现在来看看,在 pandas 怎么简单转换成规范2数据: - 第一句主要是为了最后结果标题与原数据标题一致而已 - 关键是第二句,这里直接使用 numpy reshape 方法,即可完成需求...- .reshape(-1,2) ,其中2就是2,而 -1 是让 numpy 你根据数据来计算最终行数 - 第三句,只是把结果数组变为一个 DataFrame - 至于最后 dropna ,...用 pandas 不就是为了既可自动化处理,又可以少写点代码吗 总结 - numpy reshape 方法,可以快速把数组转换成指定行数或数 - 用 -1 可以让 numpy 自动计算行或数量

    79820

    pythonpandasDataFrame对行和操作使用方法示例

    pandasDataFrame时选取行或: import numpy as np import pandas as pd from pandas import Sereis, DataFrame...'w',使用类字典属性,返回是Series类型 data.w #选择表格'w',使用点属性,返回是Series类型 data[['w']] #选择表格'w',返回是DataFrame...(0) #取data第一行 data.icol(0) #取data第一 ser.iget_value(0) #选取ser序列第一个 ser.iget_value(-1) #选取ser序列最后一个...6所在第4,有点拗口 Out[31]: d three 13 data.ix[data.a 5,2:4] #选择'a'中大于5所在第3-5(不包括5) Out[32]: c...github地址 到此这篇关于pythonpandasDataFrame对行和操作使用方法示例文章就介绍到这了,更多相关pandas库DataFrame行列操作内容请搜索ZaLou.Cn以前文章或继续浏览下面的相关文章希望大家以后多多支持

    13.4K30

    Pandas如何查找某中最大值?

    一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取问题,问题如下:譬如我要查找某中最大值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通,也能顺利地解决自己问题。...顺利地解决了粉丝问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取问题,文中针对该问题,给出了具体解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出问题,感谢【瑜亮老师】给出思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

    34610

    Python】基于组合删除数据框重复值

    本文介绍一句语句解决组合删除数据框重复值问题。 一、举一个小例子 在Python中有一个包含3数据框,希望根据name1和name2组合(在两行顺序不一样)消除重复项。...二、基于两删除数据框重复值 1 加载数据 # coding: utf-8 import os #导入设置路径库 import pandas as pd #导入数据处理库...import numpy as np #导入数据处理库 os.chdir('F:/微信公众号/Python/26.基于组合删除数据框重复值') #把路径改为数据存放路径 df =...从上图可以看出用set替换frozense会报不可哈希错误。 三、把代码推广到 解决组合删除数据框重复值问题,只要把代码取两代码变成即可。...numpy as np #导入数据处理库 os.chdir('F:/微信公众号/Python/26.基于组合删除数据框重复值') #把路径改为数据存放路径 name = pd.read_csv

    14.7K30

    Python-科学计算-pandas-21-DF2转为字典

    系统:Windows 10 编辑器:JetBrains PyCharm Community Edition 2018.2.2 x64 pandas:1.1.5 这个系列讲讲Python科学计算及可视化...今天讲讲pandas模块 抽取Df构成一个字典 Part 1:场景描述 已知df1,包括6,"time", "pos", "value1", "value2", "value3", "value4...抽取其中pos和value1构成一个字典 由df生成字典 Part 2:代码 import pandas as pd dict_1 = {"time": ["2019-11-02", "...to_dict() 将字典值组织方式改为集合,dict_map = df_1.groupby('pos')['value1'].apply(set).to_dict(),结果如下,修改了一下数据源,可以实现去重效果...同样数据源两种方式差别如下 dict_map = df_1.groupby(‘pos’)[‘value1’].apply(set).to_dict() dict_map = df_1.groupby

    1.5K20

    pandasloc和iloc_pandas获取指定数据行和

    大家好,又见面了,我是你们朋友全栈君 实际操作我们经常需要寻找数据某行或者某,这里介绍我在使用Pandas时用到两种方法:iloc和loc。...读取第二行值 (2)读取第二行值 (3)同时读取某行某 (4)进行切片操作 ---- loc:通过行、名称或标签来索引 iloc:通过行、索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...[1,:] (2)读取第二值 # 读取第二全部值 data2 = data.loc[ : ,"B"] 结果: (3)同时读取某行某 # 读取第1行,第B对应值 data3...3, 2:4]第4行、第5取不到 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/178799.html原文链接:https://javaforall.cn

    8.9K21

    为什么 GROUP BY 之后不能直接引用原表

    为什么 GROUP BY 之后不能直接引用原表(不在 GROUP BY 子句) ? 莫急,我们慢慢往下看。...SQL 模式主要分两类:语法支持类和数据检查类,常用的如下   语法支持类         ONLY_FULL_GROUP_BY       对于 GROUP BY 聚合操作,如果在 SELECT ...0,产生一个warning;       2、Out Of Range,变成插入最大边界值;       3、当要插入新行,不包含其定义没有显式DEFAULT子句非NULL值时,该列缺少值...就会约束:当我们进行聚合查询时候,SELECT 不能直接包含非 GROUP BY 子句中。...SELECT 子句中不能直接引用原表原因;   3、一般来说,单元素集合属性和其唯一元素属性是一样

    1.7K10

    MySQL索引前缀索引和索引

    正确地创建和使用索引是实现高性能查询基础,本文笔者介绍MySQL前缀索引和索引。...,因为MySQL无法解析id + 1 = 19298这个方程式进行等价转换,另外使用索引时还需注意字段类型问题,如果字段类型不一致,同样需要进行索引计算,导致索引失效,例如 explain select...第二行进行了全表扫描 前缀索引 如果索引值过长,可以仅对前面N个字符建立索引,从而提高索引效率,但会降低索引选择性。...前缀字符个数 区分度 3 0.0546 4 0.3171 5 0.8190 6 0.9808 7 0.9977 8 0.9982 9 0.9996 10 0.9998 索引 MySQL支持“索引合并...); Using where 复制代码 如果是在AND操作,说明有必要建立联合索引,如果是OR操作,会耗费大量CPU和内存资源在缓存、排序与合并上。

    4.4K00

    Python实用秘技15」pandas基于范围条件进行表连接

    第15期,本系列立足于笔者日常工作中使用Python积累心得体会,每一期为大家带来一个几分钟内就可学会简单小技巧。   ...作为系列第15期,我们即将学习是:在pandas基于范围条件进行表连接。   ...表连接是我们日常开展数据分析过程很常见操作,在pandas基于join()、merge()等方法,可以根据左右表连接依赖字段之间对应值是否相等,来实现常规连接。   ...进行连接,再在初步连接结果表基于left_id或right_id进行分组筛选运算,过滤掉时间差大于7天记录:   而除了上面的方式以外,我们还可以基于之前文章给大家介绍过pandas功能拓展库...pyjanitor条件连接方法,直接基于范围比较进行连接,且该方式还支持numba加速运算:

    22710
    领券