/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/3/20 21:24 # @Author : cunyu # @Site...news_sheet.write(i+1, 1, table.row_values(int(rank_list[i]))[1]) workbook.save('%s-网易新闻.xls' %(data)) 写入符合条件数据后新的表格
> 经常听别人说 Python 在数据领域有多厉害,结果学了很长时间,连数据处理都麻烦得要死。...后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas # 前言 有人说,用 pandas 做数据分析真的很方便,但是,总会有人反对,我们也不浪费时间讨论这无聊的问题。...本文是我为准备 pandas 专栏的案例时摘录的一些小技巧应用,如果你希望完整学习所有相关知识,请关注我的 pandas 专栏 # 数据来源 数据取自 github 项目 BlankerL/DXY-COVID...当然看看数据整体情况。 --- # 数据报告 我们直接使用基于 pandas 的一个快速数据报告库 pandas_profiling。...,然后取最大的作为匹配 你打算用 Python 自己撸这个逻辑?
对数据集进行分组并对各组应用一个函数,这是数据分析工作的重要环节。在将数据集准备好之后,通常的任务就是计算分组统计或生成透视表。...pandas提供了一个高效的groupby功能,它使你能以一种自然的方式对数据集进行切片、切块、摘要等操作。 groupby的简单介绍 ?...它还没有进行计算,但是已经分组完毕。 ? image.png 以上是对已经分组完毕的变量的一些计算,同时还涉及到层次化索引以及层次化索引的展开。 groupby还有更加简便得使用方法。 ?...我们可以利用以前学习pandas的表格合并的知识,但是pandas也给我专门提供了更为简便的方法。 ?...至于为什么不准确为零,这是由于python的float浮点类型数据自身不够精确的问题,不在我们讨论之内。
问题描述:在当前文件夹中有一个存放同一门课程两个班级同学成绩的Excel文件“学生成绩.xlsx”,每个工作表中存放一个班级的成绩。...编写程序,使用pandas读取其中的数据,然后绘制柱状图和热力图对学生的成绩数据进行可视化。...技术要点:1)使用pandas读取Excel多WorkSheet中的数据;2)使用pandas函数merge()横向合并DataFrame;3)柱状图与热力图的绘制。 测试数据: ? 参考代码: ?
说到python与数据分析,那肯定少不了pandas的身影,本文希望通过分析经典的NBA数据集来系统的全方位讲解pandas包,建议搭配IDE一遍敲一边读哦。话不多说,开始吧!...使用索引 使用.loc与.iloc 查询数据集 分类和汇总数据 对列进行操作 指定数据类型 数据清洗 数据可视化 一、安装与数据介绍 pandas的安装建议直接安装anaconda,会预置安装好所有数据分析相关的包...CSV文件,并首先查看了数据集的内容。...(nba["team_id"] == "BLB") ... ] 六、分类和汇总数据 我们接着学习pandas处理数据集的其他功能,例如一组元素的总和,均值或平均值。...幸运的是,Pandas 库提供了分组和聚合功能来帮助我们完成此任务。 Series有二十多种不同的方法来计算描述性统计数据。
标签:Python与Excel, pandas 在Python中,pandas groupby()函数提供了一种方便的方法,可以按照我们想要的任何方式汇总数据。...因为已经指定“Transaction Date”列是一个类似datetime的对象,所以我们可以通过.dt访问器访问这些属性,该访问器允许向量化操作,即pandas处理数据的合适方式。...现在,你已经基本了解了如何使用pandas groupby函数汇总数据。下面讨论当使用该函数时,后台是怎么运作的。...在元组中,第一个元素是类别名称,第二个元素是属于特定类别的子集数据。因此,这是拆分步骤。 我们也可以使用内置属性或方法访问拆分的数据集,而不是对其进行迭代。...例如,属性groups为我们提供了一个字典,其中包含属于给定组的行的组名(字典键)和索引位置。 图12 要获得特定的组,简单地使用get_group()。
导读 Pandas作为Python数据分析的首选框架,不仅功能强大接口丰富,而且执行效率也相比原生Python要快的多,这是得益于Pandas底层由C实现,同时其向量化执行方式也非常利于并行计算。...更重要的是,这种向量化操作不仅适用于数值计算,对于文本和时间格式也有着良好的支持,而这就不得不从Pandas的属性接口谈起。 ?...01 字符串接口——str 在Pandas中,当一列数据类型均为字符串类型时,则可对该列执行属性接口操作,即通过调用.str属性可调用一系列的字符串方法函数,其中这里的字符串方法不仅涵盖了Python中内置的字符串通用方法...针对这一数据,需要完成如下处理需求: 规整姓名列,均变为小写形式且过滤无用字符 提取所在城市信息 计算平均薪资 提取部下人数信息 对于以上需求,用Pandas实现都非常之容易: 姓名列统一小写,然后过滤掉非字母的字符...由于时间类型在某些特定应用场景还是非常常用的,所以灵活运用dt属性接口也可实现非常便捷的数据处理操作。 这里首先仍然给出示例数据: ?
作者:luanhz 导读 Pandas作为Python数据分析的首选框架,不仅功能强大接口丰富,而且执行效率也相比原生Python要快的多,这是得益于Pandas底层由C实现,同时其向量化执行方式也非常利于并行计算...更重要的是,这种向量化操作不仅适用于数值计算,对于文本和时间格式也有着良好的支持,而这就不得不从Pandas的属性接口谈起。 ?...01 字符串接口——str 在Pandas中,当一列数据类型均为字符串类型时,则可对该列执行属性接口操作,即通过调用.str属性可调用一系列的字符串方法函数,其中这里的字符串方法不仅涵盖了Python中内置的字符串通用方法...针对这一数据,需要完成如下处理需求: 规整姓名列,均变为小写形式且过滤无用字符 提取所在城市信息 计算平均薪资 提取部下人数信息 对于以上需求,用Pandas实现都非常之容易: 姓名列统一小写,然后过滤掉非字母的字符...由于时间类型在某些特定应用场景还是非常常用的,所以灵活运用dt属性接口也可实现非常便捷的数据处理操作。 这里首先仍然给出示例数据: ?
县代码:由美国环保署分配的特定州的代码 地点编号:由美国环保局分配的特定县的地点编号 地址:监测站点的地址 状态:监测点的状态 县:县监测站点 城市:监测点的城市 日期本地:监视日期 四种污染物(NO2...小时:指在某一天记录的最大NO2浓度的小时数 观察总数超过140万。...对于这么大一个数据集分析是比较困难的,而且是随时间变化的 我们仔细观察一下数据: 发现每四个是重复的数据,看后面的字段部分: 发现有缺失值,并且有少量字段数据是不一样的,为什么会产生这种情况呢?...天算,2000-2016年有17年,共有6205天,现在的数据有6047条 因为2016年数据并不是到年底的 通过查看数据,发现只是到四月底的: 我们看一下美国标准的划分: 我们使用map函数对pandas...关注Python爱好者社区回复皇后即可获取本文数据和代码! 小编的免费Python入门课程已经登场,等你来撩~ 已经2400+小伙伴加入学习啦~
详细学习 pandas 和 xlrd:从零开始 前言 在数据处理和分析中,Excel 文件是最常见的数据格式之一。Python 提供了强大的库 pandas,可以轻松地处理 Excel 文件中的数据。...你可以使用这些方法来处理数据集中的缺失值,确保数据完整性和一致性。 十、数据筛选与条件过滤 10.1 场景概述 有时你需要从大数据集中筛选出符合特定条件的数据,比如筛选出所有年龄大于 30 岁的人。...代码示例:按城市分组并计算平均年龄 # 示例数据 data = { 'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva'], 'Age':...'City': ['New York', 'Los Angeles', 'Chicago', 'New York', 'Chicago'] } df = pd.DataFrame(data) # 按城市分组并计算平均年龄...Gender’, aggfunc=‘mean’):创建一个数据透视表,按城市和性别分组,计算每组的平均年龄。
25% 2.000000 50% 3.000000 75% 4.000000 max 8.000000 DataFrame对象的索引标明了描述性统计数据的名字,每一列代表我们数据集中一个特定的变量。...出于实用的考虑(不要让模型的估计没有个尽头),最好从完整的数据集中取出一些分层样本。 本文从MongoDB读取数据,用Python取样。 1....pandas的.from_dict(...)方法生成一个DataFrame对象,这样处理起来更方便。 要获取数据集中的一个子集,pandas的.sample(...)方法是一个很方便的途径。...()方法会计算整个数据集中的总数目。...接着我们将这些数字与要归到训练集的比例(1-test_size)进行比较:如果数字小于比例,我们就将记录放在训练集(train属性的值为True)中;否则就放到测试集中(train属性的值为False)
详细学习 pandas 和 xlrd:从零开始 前言 在数据处理和分析中,Excel 文件是最常见的数据格式之一。Python 提供了强大的库 pandas,可以轻松地处理 Excel 文件中的数据。...你可以使用这些方法来处理数据集中的缺失值,确保数据完整性和一致性。 四、数据筛选与条件过滤 4.1 场景概述 有时你需要从大数据集中筛选出符合特定条件的数据,比如筛选出所有年龄大于 30 岁的人。...代码示例:按城市分组并计算平均年龄 # 示例数据 data = { 'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva'], 'Age':...'City': ['New York', 'Los Angeles', 'Chicago', 'New York', 'Chicago'] } df = pd.DataFrame(data) # 按城市分组并计算平均年龄...Gender’, aggfunc=‘mean’):创建一个数据透视表,按城市和性别分组,计算每组的平均年龄。
背景 Pandas 对于Pythoner的搞数据分析的来说是常用的数据操作库,对于很多刚接触Pandas的人来说会发现它是一个很方便而且好用的库,它提供了各种数据变化、查询和操作,它的dataframe...但是很多新手在使用过程中会发现pandas的dataframe的性能并不是很高,而且有时候占用大量内存,并且总喜欢将罪名归于Python身上(lll¬ω¬),今天我这里给大家总结了在使用Pandas的一些技巧和代码优化方法...1.2apply方法 dataframe是一种列数据,apply对特定的轴计算做了优化,在针对特定轴(行/列)进行运算操作的时候,apply的效率甚至比iterrow更高. def loop_iterrows_test...因此,我们在使用pandas进行计算的时候,如果可以使用内置的矢量方法计算最好选用内置方法,其次可以考虑apply方法,如果对于非轴向的循环可以考虑iterrow方法。...用DataFrame.select_dtypes来只选择特定类型列,然后我们优化这种类型,并比较内存使用量。
文末送书 01 缺失值处理 缺失值是各类数据集中经常会遇到的情形,相较于工整完全的数据记录,带有一定的缺失值更接近于数据的真实原貌。...例如城市抓拍过车记录中,对于一条包括出发时间和到达时间的车辆行驶记录,当到达时间小于等于出发时间时,或者到达时间与出发时间的时间差小于某个阈值时,都可以认为是异常记录 基于特定业务含义,单条记录并无异常...最后,感谢北京大学出版社赞助,送书《Python数据分析全流程实操指南》1本: 内容简介: 本书基于Python3.7版本软件编写,全书主要围绕整个数据分析方法论的标准流程,为读者重点展示了Python...本书首先介绍了数据分析的方法论,给读者介绍了具体的数据分析挖掘标准流程,接着介绍了Python常用的工具包,包括科学计算库NumPy、数据分析库Pandas、数据挖掘库Scikit-Learn,以及数据可视化库...,深入浅出、循序渐进地介绍Python数据分析的全过程。
顾名思义,该函数对满足特定条件的数字相加。 示例数据集 本文使用从Kaggle找到的一个有趣的数据集。...pandas中的SUMIF 使用布尔索引 要查找Manhattan区的电话总数。布尔索引是pandas中非常常见的技术。本质上,它对数据框架应用筛选,只选择符合条件的记录。...例如,如果想要Manhattan区的所有记录: df[df['Borough']=='MANHATTAN'] 图2:使用pandas布尔索引选择行 在整个数据集中,看到来自Manhattan的1076...图3:Python pandas布尔索引 使用已筛选的数据框架,可以选择num_calls列并计算总和sum()。...“未指定”类别可能是由于缺少一些数据,这里不重点讨论这些数据。 Pandas中的SUMIFS SUMIFS是另一个在Excel中经常使用的函数,允许在执行求和计算时使用多个条件。
pandas提供了使我们能够快速便捷地处理结构化数据的大量数据结构和函数。Pandas中用的最多的是DataFrame,它是一个面向列的二维表结构,且含有行标和列标。...pandas兼具numpy高性能的数组计算功能以及电子表格和关系型数据库(如SQL)灵活的数据处理功能。...譬如我想知道各个城市的招聘数量分布情况, 会不会大部分的工作机会都集中在北上广深?是不是北上广深的平均工资也高于其他城市?...可以看到,替换后的df3['平均月薪']值从str变为了可以计算的float,月薪样本总数16966个,样本的平均月薪14197元。...哎,记得之前城市—职位数分布图么?全国30个城市中,职位数排名前5 的也是这5座城市!看来北上广深杭不仅集中了全国大部分的职位数量、连平均工资也是领跑全国的!不禁让人觉得越大越强!
本教程将介绍如何使用Python编程语言,通过多个表格文件,计算特定单元格数据的平均值。准备工作在开始之前,请确保您已经安装了Python和必要的库,例如pandas。...每个文件的数据结构如下:任务目标我们的目标是计算所有文件中特定单元格数据的平均值。具体而言,我们将关注Category_A列中的数据,并计算每个Category_A下所有文件中相同单元格的平均值。...总结这篇文章介绍了如何使用Python处理包含多个表格文件的任务,并计算特定单元格数据的平均值。...准备工作: 文章首先强调了在开始之前需要的准备工作,包括确保安装了Python和必要的库(例如pandas)。任务目标: 文章明确了任务的目标,即计算所有文件中特定单元格数据的平均值。...脚本使用了os、pandas和glob等库,通过循环处理每个文件,提取关键列数据,最终计算并打印出特定单元格数据的平均值。
通过本文的介绍,你将学习到如何在大型数据集中使用 datatable 包进行数据处理,特别在数据量特别大的时候你可以发现它可能比 Pandas 更加强大。...() pandas_df = datatable_df.to_pandas() 下面,将 datatable 读取的数据帧转换为 Pandas dataframe 形式,并比较所需的时间,如下所示:...帧的基础属性 下面来介绍 datatable 中 frame 的一些基础属性,这与 Pandas 中 dataframe 的一些功能类似。...统计总结 在 Pandas 中,总结并计算数据的统计信息是一个非常消耗内存的过程,但这个过程在 datatable 包中是很方便的。...来计算每列数据的均值,并比较二者运行时间的差异。
通过本文的介绍,你将学习到如何在大型数据集中使用 datatable 包进行数据处理,特别在数据量特别大的时候你可以发现它可能比 Pandas 更加强大。...() pandas_df = datatable_df.to_pandas() 下面,将 datatable 读取的数据帧转换为 Pandas dataframe 形式,并比较所需的时间,如下所示: %...帧的基础属性 下面来介绍 datatable 中 frame 的一些基础属性,这与 Pandas 中 dataframe 的一些功能类似。...统计总结 在 Pandas 中,总结并计算数据的统计信息是一个非常消耗内存的过程,但这个过程在 datatable 包中是很方便的。...来计算每列数据的均值,并比较二者运行时间的差异。
领取专属 10元无门槛券
手把手带您无忧上云