PyTorch是一个开源的深度学习框架,由Facebook的人工智能研究团队开发,专为深度学习研究和开发而设计。PyTorch 中的张量就是元素为同一种数据类型的多维矩阵。...在 PyTorch 中,张量以 "类" 的形式封装起来,对张量的一些运算、处理的方法被封装在类中。...PyTorch 计算的数据都是以张量形式存在, 我们需要掌握张量各种运算。...('cuda') PyTorch 默认会将张量创建在 CPU 控制的内存中, 即: 默认的运算设备为 CPU。...张量的基本运算包括多种操作: 加法和减法:两个同阶张量可以进行元素对元素的加法和减法运算。 标量乘法:一个标量可以与任何阶的张量相乘,结果是将原张量的每个元素乘以该标量。
文章目录 1. tensor 张量 2. 运算 3....切片、形状size()、改变形状view() 4. item() 只能读取一个元素 参考 http://pytorch123.com/ 1. tensor 张量 empty 不初始化 import...torch.tensor([[5.5, 3], [2,4]]) tensor([[5.5000, 3.0000], [2.0000, 4.0000]]) new_* 方法,继承之前张量的属性
tensor复制可以使用clone()函数和detach()函数即可实现各种需求。cloneclone()函数可以返回一个完全相同的tensor,新的tensor开辟新的内存,但是仍然留在计算图中。
1、在pytorch中,有以下9种张量类型 ?...转换 pytorch中的张量默认采用[N, C, H, W]的顺序,并且数据范围在[0,1],需要进行转置和规范化 PIL.Image转换为tensor from PIL import Image import...# 在将卷积层输入全连接层的情况下通常需要对张量做形变处理, # 相比torch.view,torch.reshape可以自动处理输入张量不连续的情况。...''' 注意torch.cat和torch.stack的区别在于torch.cat沿着给定的维度拼接, 而torch.stack会新增一维。...例如当参数是3个10x5的张量,torch.cat的结果是30x5的张量, 而torch.stack的结果是3x10x5的张量。
而 CAT 方法则是在同一维度上水平拼接张量,适用于需要扩展特征空间宽度的情况~ torch.cat() 该函数接受两个参数:输入张量列表和拼接的维度。...使用torch.stack可以保留两个信息:序列和张量矩阵信息。当我们需要把一系列的二维张量转换为三维的张量时,可以使用torch.stack来实现。...例如,如果我们有两个形状为(3, 3)的二维张量A和B,我们可以通过指定dim=0来在它们的最前面增加一个新的维度,结果张量的形状就会变为(2, 3, 3)。...张量索引操作允许我们对多维数组中的元素进行访问和操作。...张量索引操作是处理多维数据的基础,它不仅能够让我们访问和修改数据,还能够帮助我们实现各种复杂的数据操作和算法。
前言 在PyTorch中,张量是核心数据结构,它是一个多维数组,类似Numpy中的数组。张量不仅仅是存储数据的容器,还是进行各种数学运算和深度学习操作的基础。...在PyTorch中,张量是tensor.Tensor 的实例,可以通过不同的方式创建,如直接从Python列表、Numpy数组或通过特定函数生成。...张量的形状 张量的形状定义了其维度和每个维度上的大小。例如,形状为(2,3,4)的张量具有2行、3列和4个深度。形状对于理解和操作张量非常重要。...变为(3, 8) 张量的原理 PyTorch中的张量是基于Tensor类实现的,它提供了对底层存储的抽象。...# 获取张量的步幅 stride = tensor_3d.stride() 张量的操作 PyTorch提供了丰富的张量操作,包括数学运算、逻辑运算、索引和切片等。 这里列举最常见的几种操作: 1.
这是我参与「掘金日新计划 · 10 月更文挑战」的第1天,点击查看活动详情 前言 PyTorch 建立在张量之上,PyTorch 张量是一个 n 维数组,类似于 NumPy 数组。...torch.rand() 创建一个随机数组 numpy.array() torch.tensor() 使用给定值创建数组 x.shape x.shape 获取数组形状 在本节中,我们将学习如何定义和更改张量...将 NumPy 数组转换为 PyTorch 张量: y=torch.from_numpy(x) print(y) print(y.dtype) 在设备之间移动张量 默认情况下,PyTorch 张量存储在...CPU 上,PyTorch 张量可以在使用 GPU 来加速计算。...然后,我们向学习了如何使用 to() 方法将张量在 CPU 和 CUDA 设备之间移动;如果创建张量时不指定设备,则张量将默认创建在 CPU 设备上。
张量的创建 张量(Tensors)类似于NumPy的ndarrays ,但张量可以在GPU上进行计算。从本质上来说,PyTorch是一个处理张量的库。一个张量是一个数字、向量、矩阵或任何n维数组。...size: 张量的形状 out: 输出的张量 layout: 内存中布局形式 device: 所在设备 requires_grad: 是否需要梯度 torch.zeros(2, 3) tensor...) torch.zeros_like(input, dtype=None, layout=None, device=None, requires_grad=False) 功能:依input形状创建全0张量...size: 张量的形状 fill_value: 张量的值 torch.arange(start=0, end. step=1, out=None, dtype=None, layout=torch.strided...# mean为张量, std为张量 torch.normal(mean=torch.arange(1., 11.), std=torch.arange(1, 0, -0.1)) tensor([0.8532
pytorch和tensorflow的爱恨情仇之基本数据类型:https://www.cnblogs.com/xiximayou/p/13759451.html pytorch版本:1.6.0 tensorflow...版本:1.15.0 基本概念:标量、一维向量、二维矩阵、多维张量。...1、pytorch中的张量 (1)通过torch.Tensor()来建立常量 ?...(3) 通过torch.tensor()更加灵活的建立常量和变量 我们还需要注意的是使用torch,Tensor()和torch.tensor()以及Variable()区别:这里可以直接传入一个列表啦...2、tensorflow中的张量 在tensorflow中,可以通过tf.consatnt()和tf.Variable()来建立张量,与pytorch旧版本类似的是,tf.constant()对应torch.Tensor
文 |AI_study 欢迎回到PyTorch神经网络编程系列。在这篇文章中,我们将通过PyTorch的张量来更深入地探讨PyTorch本身。废话不多说,我们开始吧。 ?...PyTorch中的张量是我们在PyTorch中编程神经网络时会用到的数据结构。 在对神经网络进行编程时,数据预处理通常是整个过程的第一步,数据预处理的一个目标是将原始输入数据转换成张量形式。...---- 引入Pytorch中的张量 torch.Tensor类示例 PyTorch中的张量就是torch.Tensor的Python类的一个实例。...张量包含下面这些类型中的一种(相同类型的)数值数据: ? 注意每种类型都有一个CPU和GPU版本。关于张量数据类型需要记住的一件事是,张量之间的张量运算必须发生在具有相同数据类型的张量之间。...去掉张量属性 作为神经网络程序员,我们需要注意以下几点: 张量包含统一类型(dtype)的数据。 张量之间的计算取决于 dtype 和 device。
学习目标 掌握张量基本运算 掌握阿达玛积、点积运算 掌握PyTorch指定运算设备 PyTorch 计算的数据都是以张量形式存在, 我们需要掌握张量各种运算....# 第三种方式 data = torch.matmul(data1, data2) print(data) print('-' * 50) 2. torch.mm 和...------------------------ torch.Size([3, 4, 4]) torch.Size([3, 5, 5]) torch.Size([3, 4, 8]) 指定运算设备 PyTorch...test01(): data = torch.tensor([10, 20 ,30]) print('存储设备:', data.device) # 如果安装的不是 gpu 版本的 PyTorch...add、sub、mul、div、neg 等函数, add_、sub_、mul_、div_、neg_ 等 inplace 函数 张量的阿达玛积运算 mul 和运算符 * 的用法 点积运算: 运算符
加、减、乘、除 加、减、乘、除是最基本的数学运算,分别通过 torch.add、torch.sub、torch.mul 和 torch.div 函数实现,Pytorch 已经重载了 +、-、* 和 /...在 PyTorch 中,除数为 0 时程序并不会报错,而是的等于 inf。...这些加、减、乘、除基本的数学运算在 PyTorch 中的实现都比较简单,但是在使用过程中还是需要注意以下几点(下面都以乘法为例,其余三种运算同理): 参与基本数学运算的张量必须形状一致,或者可以通过广播机制扩展到相同的形状...这是因为生成张量 x 和 y 的类型不一致,当然本小节使用的都是 torch.arange 函数生成张量 y,这也是为了说明类型陷阱的问题。...矩阵乘法要求相乘的张量类型一致; 原地操作由于将运算后的张量赋值给原始张量,但是如果运算后的张量和原始张量的类型不一样,也会抛出错误。
PyTorch 提供了这么多方式从数组和列表中创建 Tensor。...() 函数返回 tensor 中的元素个数); 隐式相等其实就是 PyTorch 中的广播机制,PyTorch 中的广播机制和 TensorFlow 以及 Numpy 中的广播机制类似。...「虽然传入的两个张量元素总个数不相等,但是通过 PyTorch 中的广播机制可以将符合广播机制的张量扩展成相同元素总个数的两个张量;」 >>> import torch >>> # 传入mean和std...PyTorch 的官方文档中强调:"当输入参数 mean 和 std 的张量形状不匹配的时候,输出张量的形状由传入 mean 参数的张量形状所决定。"...代码段,「这是因为当传入的两个张量形状不匹配,但是元素总个数相等的情况下,PyTorch 会使用 reshape 函数将传入参数 std 的张量形状改变成和传入 mean 参数张量相同的形状,这可能会引发一些问题
reshape 函数 transpose 和 permute 函数 view 和 contigous 函数 squeeze 和 unsqueeze 函数 在搭建网络模型时,掌握对张量形状的操作是非常重要的...网络层与层之间很多都是以不同的 shape 的方式进行表现和运算,我们需要掌握对张量形状的操作,以便能够更好处理网络各层之间的数据连接,确保数据能够顺利地在网络中流动,接下来我们看看几个常用的函数方法...在内部实现上,reshape通常通过修改张量的元数据(如shape和strides属性)来实现,而不需要重新排列数据本身。...在 PyTorch 中,有些张量是由不同的数据块组成的,它们并没有存储在整块的内存中,view 函数无法对这样的张量进行变形处理,如果张量存储在不连续的内存中,使用view函数会导致错误。...squeeze 和 unsqueeze 函数 squeeze函数用于移除张量中维度为1的轴,而unsqueeze函数则用于在指定位置插入一个新的维度。
本文介绍张量 (Tensor) 的基本知识 。 参考 深入浅出PyTorch ,系统补齐基础知识。...本节目录 张量的简介 PyTorch如何创建张量 PyTorch中张量的操作 PyTorch中张量的广播机制 张量 几何代数中定义的张量是基于向量和矩阵的推广,比如我们可以将标量视为零阶张量,矢量可以视为一阶张量...我们可能有10,000 张郁金香的图片,这意味着,我们将用到4D张量: (batch_size, width, height, channel) = 4D 在PyTorch中, torch.Tensor...,但是很多情况下,我们希望原始张量和变换后的张量互相不影响。...为了使创建的张量和原始张量不共享内存,我们需要使用第二种方法torch.reshape(), 同样可以改变张量的形状,但是此函数并不能保证返回的是其拷贝值,所以官方不推荐使用。
当求第一个轴的和时,我们是在求第一个轴的元素的和。...这个张量的第二轴包含四组数字。因为我们有三组四个数,所以我们得到三个和。...注意对max() 方法的调用如何返回两个张量。第一个张量包含最大值,第二个张量包含最大值的索引位置。这就是argmax 给我们的。 对于第一个轴,最大值是4、3、3和5。...让我们看看PyTorch。...一、高级索引和切片 对于NumPy ndarray对象,我们有一组相当健壮的索引和切片操作,PyTorch张量对象也支持大多数这些操作。 使用此资源进行高级索引和切片。
创建序列张量 在循环计算或者对张量进行索引时,经常需要创建一段连续的整型或浮点型的序列张量。PyTorch 提供了一些能够创建序列张量的方法。...,张量的元素值为在 [start, end] 之间,步长为 step 的整型序列,包含 end 本身; 使用 torch.range() 函数会出现 Warning 警告:未来的 Pytorch 版本会将...因为 torch.range() 函数和 Python 的内建函数 range 行为不一致,Python 中的 range 函数生成的整数序列范围为 [start, end) (包左不包右,Python...torch.arange() 函数和 torch.range() 函数功能相似。「如果想要创建整型序列,推荐使用 torch.arange() 函数。」...c = torch.range(0, 10) 对于张量 b 来说,由于 ,因此最终张量 b 为长度为 5 的 1D 张量。
本文为PyTorch Fundamentals[1]的学习笔记,对原文进行了翻译和编辑,本系列课程介绍和目录在《使用PyTorch进行深度学习系列》课程介绍[2]。...本章将介绍将介绍如何安装和配置可以在GPU运行的PyTorch环境,介绍PyTorch的基本构建模块——张量(tensor)的概念及几种必要的张量运算方法。 目录: 1.什么是 PyTorch?...神经网络充满了矩阵乘法和点积。深度学习中使用矩阵乘法的主要原因是矩阵乘法的线性变换性质和并行计算的效率。 在深度学习中,神经网络的基本组成部分是神经元(或称为节点)和它们之间的连接权重。...torch.nn.Linear()")") 模块(我们稍后会看到它的实际应用),也称为前馈层或全连接层,实现输入 x 和输入之间的矩阵乘法权重矩阵 A 。...花 1 小时浏览 PyTorch 基础教程[29](我推荐快速入门[30]和张量[31]部分)。
Pytorch tensors (张量) ---- Introduce Pytorch的Tensors可以理解成Numpy中的数组ndarrays(0维张量为标量,一维张量为向量,二维向量为矩阵,三维以上张量统称为多维张量...torch.long) # 类似的还有如下创建方式: x = torch.zeros() x = torch.ones() x = torch.ones_like(z) # 创建一个与z形状相同的全1张量...Numpy的shpae属性 x.size() # 改变张量的维度,与Numpy的reshape类似 x = torch.randn(4, 4) # torch.Size([4, 4]) y = x.view...permute和transpose后,tensor占用的内存可能就变得不连续了,因此不能用view()函数来改变张量维度。...但是后续Pytorch增加了函数reshape()来改变tensor维度,相当于x.contigous().view()的功能,因此要改变维度直接使用y=torch.reshape(x,[16])即可。
领取专属 10元无门槛券
手把手带您无忧上云