首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

8年了,Transformer注意力机制一直有Bug?

Transformer 每个层的工作,其实就是把信息添加到原始单字向量当中。...现在,Transformer 会将输出向量乘以一个矩形矩阵,再将生成的词汇长度向量填充到 Softmax 当中,最后把这些指数输出视为下一个 token 概率。这确有合理性,但大家都知道其中仍有问题。...它基本上就是将嵌入向量划分成几个部分,每个头使用整个微量中的信息来注释输入向量中的一个(不重叠)部分。...修改后的主要区别在于负极限,当 x 中的条目明显小于零且模型试图回避一次注释时,其表现将与原始 Softmax 的行为有所不同。...该函数还具备以下属性,即输出向量中的相对值不变: 最初我本想把这个函数命名为 Ghostmax,因为这里的 x 中有个额外的零值条目(即 exp(0)=1),而 V 矩阵中有一个会衰减结果的零向量。

31020

在PyTorch中构建高效的自定义数据集

此外,DataLoader还会为对数据进行重新排列,因此在发送(feed)数据时无需重新排列矩阵或跟踪索引。...torch.eye函数创建一个任意大小的单位矩阵,其对角线上的值为1。如果对矩阵行进行索引,则将在该索引处获得值为1的行向量,这是独热向量的定义! ?...为了说明此问题,请考虑以下情况:当我们将“ John”和“ Steven”之类的名称堆叠在一起形成一个单一的独热矩阵时。'...另一方面,当批次大小不重要时,这对于快速测试时,数据加载或沙盒测试很有用。 通过使用空字符填充或截断名称来获得固定的长度。...首先,我在构造函数引入一个新的参数,该参数将所有传入名称字符固定为length值。我还将\0字符添加到字符集中,用于填充短的名称。接下来,数据集初始化逻辑已更新。

3.6K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    FastAI 之书(面向程序员的 FastAI)(七)

    of tensor a (3) must match the size of tensor b (2) at dimension 0 通过逐元素算术,我们可以去掉我们的三个嵌套循环中的一个:我们可以在将...例如,显然无法将 3×3 矩阵与 4×5 矩阵相加,但如果我们想将一个标量(可以表示为 1×1 张量)与矩阵相加呢?或者大小为 3 的向量与 3×4 矩阵?...将向量广播到矩阵 我们可以将一个向量广播到一个矩阵中: c = tensor([10.,20,30]) m = tensor([[1., 2, 3], [4,5,6], [7,8,9]]) m.shape...将大小为 3 的向量添加到大小为 3×3 的矩阵时,向量的元素是添加到矩阵的每一行还是每一列?(确保通过在笔记本中运行此代码来检查您的答案。) 广播和 expand_as 会导致内存使用增加吗?...完成钩子后,应该将其删除,否则可能会泄漏一些内存: hook.remove() 这就是为什么将Hook类作为上下文管理器通常是一个好主意,当您进入时注册钩子,当您退出时删除它。

    46610

    RNN对于变长序列的处理方法, 为什么RNN需要mask

    最后由n个sample组成的dataset能形成一个shape == (n, max_length)的矩阵。然后可以将这个矩阵传递到后续的模型中使用。...因为RNN在计算状态向量时不仅考虑当前,也考虑前一次的状态向量,如果为了维持真实长度,采用补0的方式,在进行状态向量计算的时候也会包含进用0补上的位置,而且这种方式无法进行彻底的屏蔽。...Pytorch 像pytorch这种动态图模型就比较方便了,可以像写python代码一样任意的用while和for循环,每一次运行都会从新建立计算图。...batch_sizes是第一列有两个有效值,第二列有一个,第三列有一个。这样排列的原因是batch做矩阵运算的时候网络是先计算所有句子的第一位,然后第二位,第三位。...代码中已经调整回原来的顺序了。当 target 是 label 时,调整起来还算方便,但如果 target 也是序列类型的数据,可能会多点体力活。

    2.6K11

    Dropbox 的核心方法和架构优化实践

    步骤 3 只是一个向量矩阵乘法 q「c」=q「w」C,其中 C 是矩阵,其列为类别词向量 c【i】「w」。...当查询包含这些术语之一时,我们将做一个备用解析并运行两个已解析查询的 OR,于是“沙滩球”这个查询将变为 (沙滩 AND 球)OR(沙滩)。...用户可能可以访问数十万甚至数百万个图像,并且我们的分类器输出具有数千个维度,因此该矩阵可能有数十亿个条目,且每当用户添加、删除或修改图像时都需要更新。...在图像内容搜索中搜索索引内容 因此,当用户搜索“野餐”时: 查找“野餐”的词向量 q「w」,然后乘以类别空间投影矩阵 C 以获得 q「c」,如上所述。...在查询时,q「c」有 10 个非零条目,因此我们只需要扫描 10 个发布列表——与文本查询所做的工作量大致相同。这为我们提供了一个较小的结果集,我们也可以更快地对其评分。

    77630

    【深度学习】Pytorch教程(十):PyTorch数据结构:4、张量操作(1):张量形状操作

    、前言   本文将介绍PyTorch中张量的数学运算之矩阵运算,包括基础运算、转置、行列式、迹、伴随矩阵、逆、特征值和特征向量等。...矩阵运算 【深度学习】Pytorch 系列教程(四):PyTorch数据结构:2、张量的数学运算(2):矩阵运算及其数学原理(基础运算、转置、行列式、迹、伴随矩阵、逆、特征值和特征向量) 3....向量范数、矩阵范数、与谱半径详解 【深度学习】Pytorch 系列教程(五):PyTorch数据结构:2、张量的数学运算(3):向量范数(0、1、2、p、无穷)、矩阵范数(弗罗贝尼乌斯、列和、行和、谱范数...用于处理需要匹配张量形状的操作时。...], [5, 6]]) 将张量变形为1维张量 z = x.view(-1) 在进行变形时,需要确保新形状要与原始张量包含的元素数量一致,否则会引发错误。

    17410

    GPT 大型语言模型可视化教程

    在这里,我们将探索只有 85,000 个参数的 nano-gpt 模型。 它的目标很简单:取一个由六个字母组成的序列: C B A B B C 并按字母顺序排列,即 "ABBBCC"。...然后,嵌入将穿过模型,经过一系列称为转换器的层,最后到达底层。 那么输出是什么呢?对序列中下一个标记的预测。因此,在第 6 个条目中,我们得到了下一个标记将是 "A"、"B "或 "C "的概率。...2.一个 GELU 激活函数(按元素计算) 3.带偏置的线性变换,返回长度为 C 的矢量 让我们追踪其中一个向量: 我们首先执行带偏置的矩阵-向量乘法,将向量扩展为长度为 4 * C 的矩阵。...-1 1 2 3 -3 -2 -1 1 2 3 然后,我们用另一个带偏置的矩阵-向量乘法将向量投影回长度 C。...当我们对模型进行时间步进时,我们会使用上一列的概率来决定下一个要添加到序列中的标记。例如,如果我们已经向模型提供了 6 个标记,我们就会使用第 6 列的输出概率。

    18410

    从概念到实践,我们该如何构建自动微分库

    在 PyTorch 中,此类模型的运行时间以 Python 中的循环为主要开销。为了避免这种情况,我的库必须在它的拟合循环中放弃 Python,并且需要完全用编译语言编写以充分利用编译器优化的性质。...通过使用 trait ojbects,我们将这些 fat pointers 放到节点向量中而不是节点自身里面。 然而,这种解决方案恰恰引入了我们开始时想要避免的那种间接性。...每一个节点在其父节点类型上是(递归地)通用的:添加两个 InputNodes 将会产生一个 AddNode。将其添加到另一个输入节点会产生 AddNode,InputNode>等等。...事实证明,LLVM 足够智能,能够自动向量化大部分不涉及缩减步骤(主要是赋值)的数值循环。与(2)结合起来看,这种方法使得很多的数值循环以最小的优化努力获得更高的效率。...如果一个节点被多次使用,这意味着在逐步向下传递梯度时做了不必要的工作。累积所有的梯度并且只递归一次将节省这项工作。 3.

    879100

    从头开始了解Transformer

    简单地循环所有向量以计算权重和输出过于缓慢。 我们将维数为 k 的 t 个向量的输入表示为 t * k 的矩阵X。包括一个minibatch维度b,得到一个大小为 (b, t, k) 的输入张量。...显然,我们希望我们最先进的语言模型至少对单词顺序有一些敏感性,因此需要修复这一问题。 解决方案很简单:我们创建一个等长的第二个向量,它表示单词在当前句子中的位置,并将其添加到单词嵌入中。...仅在当前段上计算梯度,但是当段窗口在文本中移动时,信息仍会传播。理论上,窗口在第n层时只会使用n层之前的信息。 RNN训练中的类似技巧称为随时间截断的反向传播。...对于序列长度t ,这是包含 个元素的密集矩阵。在标准的 32 位精度下,当 t = 1000 时,一批 16 个这样的矩阵占用大约 250Mb 的内存。...当我们处理完该批次时,执行单步的梯度下降,并将梯度归零。在Pytorch中,这很容易:你觉得你的训练循环中的 optimizer.zero_grad() 调用似乎是多余的吗?

    1.7K31

    图解神经网络的数学原理

    我们会利用单个神经元的计算知识,在整个层中进行向量化,将这些计算融合进矩阵方程中。为了让数学符号一致,这些方程会写给选定的网络层。另外,下标的 i 符号标记了这一层的神经元顺序。...图:单个网络层 还有一件重要的事:在我们为单个神经元写方程时,我们使用 x 和 y-hat,它们分别表示特征列向量和预测值。当换成网络层的通用符号时,我们使用向量 a —— 意指对应网络层的激活。...在这里使用 for 循环并不是非常高效,所以我们换成向量化来加快计算速度。首先,将权重 w 的水平向量堆放在一起,我们创建矩阵 W。同样地,我们将网络层中每个神经元的偏差堆放在一起,创建垂直向量 b。...现在,我们可以顺利地创建一个矩阵方程式了,从而一次性计算该网络层的所有神经元。我们同样写下来用过的矩阵和向量的维度。 多个例子中的向量化 我们迄今所用的方程式只涉及了一个例子。...首先,我们将每一层的垂直向量 x,a 和 z 放在一起,分别创建矩阵 X,A 和 Z。然后,我们根据新创建的矩阵,重新编写之前列出的方程式。 什么是激活函数?我们为何需要它?

    42610

    图解神经网络的数学原理

    我们会利用单个神经元的计算知识,在整个层中进行向量化,将这些计算融合进矩阵方程中。为了让数学符号一致,这些方程会写给选定的网络层。另外,下标的 i 符号标记了这一层的神经元顺序。...图:单个网络层 还有一件重要的事:在我们为单个神经元写方程时,我们使用 x 和 y-hat,它们分别表示特征列向量和预测值。当换成网络层的通用符号时,我们使用向量 a —— 意指对应网络层的激活。...在这里使用 for 循环并不是非常高效,所以我们换成向量化来加快计算速度。首先,将权重 w 的水平向量堆放在一起,我们创建矩阵 W。同样地,我们将网络层中每个神经元的偏差堆放在一起,创建垂直向量 b。...现在,我们可以顺利地创建一个矩阵方程式了,从而一次性计算该网络层的所有神经元。我们同样写下来用过的矩阵和向量的维度。 多个例子中的向量化 我们迄今所用的方程式只涉及了一个例子。...首先,我们将每一层的垂直向量 x,a 和 z 放在一起,分别创建矩阵 X,A 和 Z。然后,我们根据新创建的矩阵,重新编写之前列出的方程式。 什么是激活函数?我们为何需要它?

    27110

    图解神经网络的数学原理

    我们会利用单个神经元的计算知识,在整个层中进行向量化,将这些计算融合进矩阵方程中。为了让数学符号一致,这些方程会写给选定的网络层。另外,下标的 i 符号标记了这一层的神经元顺序。...图:单个网络层 还有一件重要的事:在我们为单个神经元写方程时,我们使用 x 和 y-hat,它们分别表示特征列向量和预测值。当换成网络层的通用符号时,我们使用向量 a —— 意指对应网络层的激活。...在这里使用 for 循环并不是非常高效,所以我们换成向量化来加快计算速度。首先,将权重 w 的水平向量堆放在一起,我们创建矩阵 W。同样地,我们将网络层中每个神经元的偏差堆放在一起,创建垂直向量 b。...现在,我们可以顺利地创建一个矩阵方程式了,从而一次性计算该网络层的所有神经元。我们同样写下来用过的矩阵和向量的维度。...所以下一步就是在多个例子中实现向量化。假设我们的数据集有 m 个条目,每个有 nx 个特征。首先,我们将每一层的垂直向量 x,a 和 z 放在一起,分别创建矩阵 X,A 和 Z。

    18310

    pytorch入门教程 | 第一章:Tensor

    我们都知道: 标量(Scalar)是只有大小,没有方向的量,如1,2,3等 向量(Vector)是有大小和方向的量,其实就是一串数字,如(1,2) 矩阵(Matrix)是好几个向量拍成一排合并而成的一堆数字...如图,我们可以看出,矩阵是二维的,向量是一维的,标量是零维的。 那么张量(Tensor)是什么呢?呵呵呵呵!大家估计也能猜出来!是按照三维排列的一堆数字? 是的。但是也不完全正确。...其实标量,向量,矩阵它们三个也是张量,标量是零维的张量,向量是一维的张量,矩阵是二维的张量。 ? 张量就是按照任意维排列的一堆数字的推广。如图所示,矩阵不过是三维张量下的一个二维切面。...等等 数学扯完了,我们撸串代码操练操练  >>>import torch #引用torch包 >>>x = torch.Tensor(2,3) #构造一个2x3的矩阵,没初始化但仍然会有值 >>>x...矩阵 看矩阵看不出张量的道道,我们来点刺激的 >>>y=torch.Tensor(4,2,3) #构造一个4x2x3的张量,没初始化 >>>y (0 ,.,.) = 1.00000e-29 * 0.0000

    1.7K100

    5 个PyTorch 中的处理张量的基本函数

    PyTorch 是一个 主要用于深度学习的Python 库。PyTorch 最基本也是最重要的部分之一是创建张量,张量是数字、向量、矩阵或任何 n 维数组。...在构建神经网络时为了降低计算速度必须避免使用显式循环,我们可以使用矢量化操作来避免这种循环。在构建神经网络时,足够快地计算矩阵运算的能力至关重要。 “为什么不使用 NumPy 库呢?”...对于深度学习,我们需要计算模型参数的导数。PyTorch 提供了在反向传播时跟踪导数的能力而 NumPy 则没有,这在Pytorch中被称为“Auto Grad”。...torch.index_select() 这个函数返回一个新的张量,该张量使用索引中的条目(LongTensor)沿维度 dim 对输入张量进行索引。...mat1 =torch.randn(3,2) describe(torch.mm(x, mat1)) 只需将矩阵作为参数传递,我们就可以轻松地执行矩阵乘法,该函数将产生一个新的张量作为两个矩阵的乘积。

    1.9K10

    深度网络揭秘之深度网络背后的数学

    神秘的神经网络第一部分 如今,我们拥有许多高级的,特殊的库与框架,比如 Keras,TensorFlow或者PyTorch,也不再总需要担心权重矩阵的大小,更不需要记住我们决定使用的激活函数导数的公式...图5,单个层 一个更重要的评价:当我们为一个单个单元编写方程时,我们使用x和y^,它们分别是特征值的列向量和预测值,当我们切换到图层的一般表示法时,我们使用向量a - 该向量可以激活相应的层。...正如你所看到的,对于每个层,我们必须执行许多非常类似的操作,因此其实for循环在此使用效率并不高,所以我们将其矢量化以加快运算,首先,我们将向量水平堆叠成一个N*1的向量。...我们将每个权重w进行转置以形成举证W,类似地,我们将层中的每个神经元的偏差堆叠在一起,从而创建垂直向量b,现在没有什么可以阻止我们构建一个矩阵方程,它可以使我们一次对层的所有神经元进行计算。...假设我们的数据集中有m个条目,每个条目都有nx个特征,首先,我们将每层的垂直向量x,a和z组合在一起,分别创建X,A和Z矩阵。然后我们重写先前布局的方程式,同时考虑新创建的矩阵。 ?

    54520

    机器学习之基于LDA的人脸识别

    接下来,创建一个空矩阵sample,用于存储所有图像的向量表示。然后利用循环遍历每个图片,并将其读取、转换为双精度类型,并将其转换为列向量picture。最后将该列向量添加到sample矩阵中。...接下来是LDA部分的代码。首先定义了两个空的矩阵Sb和Sw,分别表示类间散度矩阵和类内散度矩阵。然后,通过循环遍历每个人的图像,计算出每个人图像的均值向量,并计算出类间散度矩阵Sb。...同时,将每个人图像的均值向量存储在meanPerson中。接下来,计算类内散度矩阵Sw,循环遍历每个图像,计算出每个图像与其对应人的均值向量之差,并计算出类内散度矩阵Sw。...然后,通过reshape函数将rebuildFace重新变换回100x80的图像矩阵。 然后,使用subplot函数将多个子图排列在一个2x4的网格上,其中每个子图显示一个特征维度下的重建人脸图像。...然后,通过两个循环将样本矩阵sample中的数据按照一定规则划分为训练数据和测试数据。第一个循环根据不同的人数进行迭代,并将每个人的前trainNumber个图像添加到trainData中。

    17730

    Attention机制竟有bug?Softmax是罪魁祸首,影响所有Transformer

    运行中,Transformer 每一层的工作流都将信息添加到原始的单词向量中。...Transformer 的最后一步是将这个输出向量与一个矩形矩阵相乘,并将得到的词汇长度向量压缩到一个 softmax 函数中,将这些指数化的输出视为下一个 token 的概率。...然后,对这个方阵的每一行进行 softmax 操作,得到的概率用作矩阵中值向量的混合函数。概率混合后的与输入向量相加,将求和结果传递给神经网络进行进一步处理。 多头注意力每层并行执行多次上述过程。...当 中的条目显著小于零并且模型试图完全避免注释时,主要的区别在于负值限制。将如下原始 softmax 的限制行为 与新的、改进后的 softmax_1 相比较。...最开始 Miller 打算将这个函数称为 ghostmax,这是因为你可以认为 中有一个额外的零值条目,并且 V 矩阵中有一个能够衰减结果的零向量。

    27520

    Attention机制竟有bug,Softmax是罪魁祸首,影响所有Transformer

    运行中,Transformer 每一层的工作流都将信息添加到原始的单词向量中。...Transformer 的最后一步是将这个输出向量与一个矩形矩阵相乘,并将得到的词汇长度向量压缩到一个 softmax 函数中,将这些指数化的输出视为下一个 token 的概率。...然后,对这个方阵的每一行进行 softmax 操作,得到的概率用作矩阵中值向量的混合函数。概率混合后的与输入向量相加,将求和结果传递给神经网络进行进一步处理。 多头注意力每层并行执行多次上述过程。...当 中的条目显著小于零并且模型试图完全避免注释时,主要的区别在于负值限制。将如下原始 softmax 的限制行为 与新的、改进后的 softmax_1 相比较。...最开始 Miller 打算将这个函数称为 ghostmax,这是因为你可以认为 中有一个额外的零值条目,并且 V 矩阵中有一个能够衰减结果的零向量。

    33830

    深度 | 从概念到实践,我们该如何构建自动微分库

    在 PyTorch 中,此类模型的运行时间以 Python 中的循环为主要开销。为了避免这种情况,我的库必须在它的拟合循环中放弃 Python,并且需要完全用编译语言编写以充分利用编译器优化的性质。...基于向量:所有计算节点都被连续地存储在一个向量中,并使用索引来寻址它们的父节点。例如,在创建输入节点时,对象 InputNode 被压入向量,且索引为 0。...节点按拓扑顺序排列。我们可以通过简单地沿着向量向前迭代来正确地执行前向传播,且没有重复的工作。 但是它也有缺点。 我们在节点向量中存储了什么类型的对象是不清楚的。...通过使用 trait ojbects,我们将这些 fat pointers 放到节点向量中而不是节点自身里面。 然而,这种解决方案恰恰引入了我们开始时想要避免的那种间接性。...如果一个节点被多次使用,这意味着在逐步向下传递梯度时做了不必要的工作。累积所有的梯度并且只递归一次将节省这项工作。 3.

    99680

    Faiss向量数据库

    所有索引在构建时都需要知道它们所操作的向量的维数,当索引建立并训练完成后,可以对索引进行两种操作:add和search。...除了这个矩阵之外,该search操作还返回一个nq-by-k浮点矩阵,其中包含相应的平方距离。...I:也是一个数组,但它包含的是最近邻居在索引中的位置或索引。 结果: 由于索引中未添加任何向量,因此无法进行有效的相似性搜索。在实际应用中,我们需要先将向量添加到索引中,然后才能进行搜索操作。...100000个64维数据 index.add(xb) # 将向量数据添加到索引中 # 优化索引(跳过) 结果:  后两个为实际的搜索输出(前五和后五)。...在搜索时,仅将查询 x 所在的单元中包含的数据库向量 y 和一些相邻的向量与查询向量进行比较。 这是通过IndexIVFFlat索引完成的。

    27910
    领券