首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

欧氏距离和余弦相似度

最近在做以图搜图的功能,在评价两个图像相似性时候,尝试了这两种指标,两者有相同的地方,就是在机器学习中都可以用来计算相似度,但是两者的含义有很大差别,以我的理解就是: 前者是看成坐标系中两个点...,来计算两点之间的距离; 后者是看成坐标系中两个向量,来计算两向量之间的夹角。...数据项A和B在坐标图中当做点时,两者相似度为距离dist(A,B),可通过欧氏距离(也叫欧几里得距离)公式计算: ? 当做向量时,两者相似度为cosθ,可通过余弦公式计算: ?...[-1,+1] ,相似度计算时一般需要把值归一化到 [0,1],一般通过如下方式: sim = 0.5 + 0.5 * cosθ 若在欧氏距离公式中,取值范围会很大,一般通过如下方式归一化: sim...50%,两者的价格变动趋势一致,余弦相似度为最大值,即两者有很高的变化趋势相似度 但是从商品价格本身的角度来说,两者相差了好几百块的差距,欧氏距离较大,即两者有较低的价格相似度 总结 对欧式距离进行l2

4.1K30

R中如何利用余弦算法实现相似文章的推荐

在目前的数据挖掘领域, 推荐包括相似推荐以及协同过滤推荐。...相似推荐(Similar Recommended) 当用户表现出对某人或者某物感兴趣时,为它推荐与之相类似的人,或者物, 它的核心定理是:人以群分,物以类聚。...协同过滤推荐(Collaborative Filtering Recommendation) 利用已有用户群过去的行为或意见,预测当前用户最可能喜欢哪些东西 或对哪些东西感兴趣。...★相似推荐是基于物品的内容,协同过滤推荐是基于用户群过去的行为, 这是两者最大的区别。 相关文章推荐主要的原理是余弦相似度(Cosine Similarity) ?...利用余弦相似度进行相似文章推荐的代码实现: library(tm) library(tmcn) library(Rwordseg) docs <- Corpus( DirSource( c

2.1K50
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于用户的协同过滤(余弦相似度)

    余弦相似度 余弦相似度用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小。余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫"余弦相似性"。 ? ?...fillna(0).values.reshape(1, -1)) sim_AB sim_AC OUT: array([[0.18353259]]) array([[0.88527041]]) 从上面看出A和C...的比较相似,那是因为fillna的原因,在实际生活中真的可以将不知道的值fillna 吗,其实上面的结论是不正确的 下一步就是对数据进行简单的处理 去中心化 让均值为0 data_center = data.apply...的相似度是负的 随便算下 A和D sim_AD = cosine_similarity(data_center.loc['A', :].fillna(0).values.reshape(1, -1),...最像 现在预测 A 对 two商品的评分 用 B和D的评分来计算 (sim_AD*data.loc['D', 'two'] + sim_AB*data.loc['B', 'two'])/(sim_AD

    2.6K20

    Python简单实现基于VSM的余弦相似度计算

    在知识图谱构建阶段的实体对齐和属性值决策、判断一篇文章是否是你喜欢的文章、比较两篇文章的相似性等实例中,都涉及到了向量空间模型(Vector Space Model,简称VSM)和余弦相似度计算相关知识...当你给出一篇文章E时,采用相同的方法计算出E=(q1, q2, …, qn),然后计算D和E的相似度。         计算两篇文章间的相似度就通过两个向量的余弦夹角cos来描述。...文本D1和D2的相似性公式如下: ? 其中分子表示两个向量的点乘积,分母表示两个向量的模的积。 计算过后,就可以得到相似度了。我们也可以人工的选择两个相似度高的文档,计算其相似度,然后定义其阈值。...使用余弦这个公式,我们就可以得到,句子A与句子B的夹角的余弦。 余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫”余弦相似性”。...所以,上面的句子A和句子B是很相似的,事实上它们的夹角大约为20.3度。

    1.8K40

    每日论文速递 | Embedding间的余弦相似度真的能反映相似性吗?

    深度学习自然语言处理 分享 整理:pp 摘要:余弦相似度是两个向量之间角度的余弦值,或者说是两个向量归一化之间的点积。...一种流行的应用是通过将余弦相似度应用于学习到的低维特征嵌入来量化高维对象之间的语义相似性。在实践中,这可能比嵌入向量之间的非归一化点积效果更好,但有时也会更糟。...余弦相似性的替代方法:鉴于余弦相似性的局限性,论文提出了可能的补救措施和替代方案,以避免在实际应用中盲目使用余弦相似性。...A:论文通过以下步骤来解决余弦相似性在高维对象语义相似性度量中的问题: 理论分析:首先,论文通过分析正则化线性模型中的嵌入,推导出余弦相似性可能产生任意和无意义相似性的理论基础。...用户和物品的动态特性:在推荐系统中,用户的兴趣和物品的流行度可能会随时间变化。研究这些动态特性如何影响余弦相似性度量,以及如何设计模型来适应这些变化,是一个值得探索的问题。

    88610

    从勾股定理到余弦相似度-程序员的数学基础

    为了理解清楚余弦相似度的来龙去脉,我将会从最简单的初中数学入手,逐步推导出余弦公式。然后基于余弦公式串讲一些实践的例子。 一、业务背景 通常我们日常开发中,可能会遇到如下的业务场景。...例如精准营销中的人群扩量涉及用户相似度的计算;图像分类问题涉及图像相似度的计算,搜索引擎涉及查询词和文档的相似度计算。相似度计算中,可能由于《数学之美》的影响,大家最熟悉的应该是余弦相似度。...第三步:计算文档向量长度|V(d)| 这里其实是不能沿用第二步的做法的。前面已经提到,向量有两大要素:方向和长度。余弦公式只考虑了方向因素。这样在实际应用中,余弦相似度就是向量长度无关的了。...所谓打分因子,即如果一个文档中相比其它的文档出现了更多的查询关键词,那么其值越大。综合考虑了多词查询的场景。经过4步,我们再看推导出来的公式和实际公式,发现相似度非常高。...推导公式和官方公式基本就一致了。 五、总结 本文简单介绍了余弦相似度的数学背景。从埃及金字塔的建设问题出发,引出了勾股定理,进而引出了余弦定理。并基于向量推导出来了余弦公式。

    62510

    常用的相似度度量总结:余弦相似度,点积,L1,L2

    从下图可以看出,点A(1.5, 1.5)和点B(2.0, 1.0)在二维嵌入空间中距离很近。当计算余弦相似度时,得到0.948的值也可以确认两个向量非常相似。...当较点A(1.5, 1.5)和点C(-1.0, -0.5)的相似度时,余弦相似度为-0.948,表明两个向量不相似。通过观察也可以看到它们在嵌入空间中方向相反。...点积和余弦相似度是密切相关的概念。点积的取值范围从负无穷到正无穷,负值表示方向相反,正值表示方向相同,当向量垂直时为0。点积值越大表示相似性越大。...使用余弦相似度来计算研究论文之间的相似度是很常见的。如果使用点积,研究论文之间的相似性是如何变化的? 余弦相似度考虑向量的方向和大小,使其适用于向量的长度与其相似度不直接相关的情况。...点积距离和余弦相似度通常用于向量或文本数据的相似性度量。主要用于向量相似性的度量,如文本挖掘和自然语言处理中的文档相似性,或信息检索、推荐系统等领域。 作者:Frederik vl

    2.3K30

    皮尔逊相似度计算的例子(R语言)

    大家好,又见面了,我是全栈君 编译最近的协同过滤算法皮尔逊相似度计算。下顺便研究R简单使用的语言。概率统计知识。...二、类似度计算在协同过滤推荐算法中的地位 ---- 在协同过滤推荐算法中,无论是基于用户(User-based)还是基于物品(Item-based),都要通过计算用户或物品间的类似度,得到离线模型...1)余弦类似度(Cosine-based Similiarity) 2)相关性类似度(Correlation-based Similiarity) 这样的类似度计算使用的算法就是皮尔森...3)修正余弦类似度(Adjusted Cosine-based Similiarity) 三、R语言入门简单介绍 ---- Windows下的R语言安装包地址为: http://cran.r-project.org...以下以还有一篇文章中的用户-物品关系为例,说明一下皮尔森类似度的计算过程。

    91420

    图的度计算和相似度计算

    可以通过以下公式计算某个节点的出度和入度:出度 = 从节点出发的边的数量入度 = 指向节点的边的数量图的相似度计算一种用于计算节点相似度的算法是节点结构相似度算法。...该算法基于两个节点之间的结构相似性来计算节点的相似度。首先,将每个节点的邻居节点及其边的类型记录下来,构建节点的邻接矩阵。对于两个节点i和j,分别计算它们的邻居节点集合Ni和Nj。...如果两个节点的邻居节点集合都为空,则相似度为0。计算节点i的邻居节点与节点j的邻居节点的交集大小,记为A。计算节点i的邻居节点与节点j的邻居节点的并集大小,记为B。...计算节点j的邻居节点与节点i的邻居节点的交集大小,记为C。计算相似度:similarity = (A + C) / B。输出相似度结果。...相似度 = (A + C) / B = (2 + 2) / 4 = 1。因此,节点i和节点j的相似度为1。使用Markdown格式输出结果:节点i与节点j的相似度为1。

    89861

    图像相似度比较和检测图像中的特定物

    对普通人而言,识别任意两张图片是否相似是件很容易的事儿。但是从计算机的角度来识别的话,需要先识别出图像的特征,然后才能进行比对。在图像识别中,颜色特征是最为常见的。...每张图像都可以转化成颜色分布直方图,如果两张图片的直方图很接近,就可以认为它们很相似。这有点类似于判断文本的相似程度。 图像比较 先来比对两张图片,一张是原图另一张是经过直方图均衡化之后的图片。 ?...原图和直方图均衡化比较.png 二者的相关性因子是-0.056,这说明两张图的相似度很低。在上一篇文章 图像直方图与直方图均衡化 中,已经解释过什么是直方图均衡化。...两张完全不同的图比较.png 直方图比较是识别图像相似度的算法之一,也是最简单的算法。当然,还有很多其他的算法啦。...总结 直方图比较和直方图反向投影的算法都已经包含在cv4j中。 cv4j 是gloomyfish和我一起开发的图像处理库,纯java实现,目前还处于早期的版本。

    2.8K10

    Spark实现推荐系统中的相似度算法

    在推荐系统中,协同过滤算法是应用较多的,具体又主要划分为基于用户和基于物品的协同过滤算法,核心点就是基于"一个人"或"一件物品",根据这个人或物品所具有的属性,比如对于人就是性别、年龄、工作、收入、喜好等...,找出与这个人或物品相似的人或物,当然实际处理中参考的因子会复杂的多。...本篇文章不介绍相关数学概念,主要给出常用的相似度算法代码实现,并且同一算法有多种实现方式。..., 2) / arr2.length), 0.5) if (dominator == 0) Double.NaN else numerator / (dominator * 1.0) } 余弦相似度.../** jblas实现余弦相似度 */ def cosineSimilarity(v1: DoubleMatrix, v2: DoubleMatrix): Double = { require

    93710

    基于人工智能句子相似度判断文本错误的方法2021.9.6

    基于人工智能句子相似度判断文本错误的方法 人工智能分支自然语言处理的文本句子相似度度量方法以后很成熟,通过相似度在关键字不同距离的截取词组,形成多个维度的句子相似度打分,并进行超平面切割分类,考虑实际的文本大小...、算力、速度等,记录数据,实施数循环方法,进行可视化分析和优化。...一、句子相似度 1、句子相似度:腾讯、百度、python 2、图书、CSDN 二、多维度超平面分类、软硬判断的数值视角、多维度 1、一些例子:多维度、超平面分类 2、我们的多维度思考:算力、计算速度、准确性...一、 1、句子相似度:腾讯、百度、python 二、 1、 2、 3、 4、 三、准确性、调参的黑盒和可视化。 1、每个月多少个文件?文件有多少句话?...2、相似度匹配单个还是混合精确度高?哪个精确的高? 3、哪些维度是强相关,算力、速度、精确的要求范围? 4、评价、数据打标签量影响学习准确率。 5、延伸到其他场景 6、

    51720

    Jaccard相似度在竞品分析中的应用

    抽象来看,即可得出两个关键词:用户和物品(或者说物品和竞品)。这个关键词是不是很熟悉?在推荐里我们经常会遇到item和user之间的相似度,那么竞品分析其实也可以同类化于相似度的计算问题。...具体做法:提到相似度计算,会想到很多方法,常见的欧几里得距离,余弦计算,皮尔逊距离等等,对于不同的距离计算,有不同的适用条件,之前总结过一个关于相似度计算的文章,只不过觉得不是很完善,所以一直没有发出来...这次做竞品分析的时候突然想起了Jaccard相似度。那么Jaccard相似度是什么呢?...简单说下公式: 给定两个集合A和B,A和B的Jaccard相似度 = |A与B的交集元素个数| / |A与B的并集元素个数|   那么这样一个公式是来应用到竞品分析中的呢?...按照前两次计算,我们认为是一样的,因为只是考虑的交集的个数,并没有考虑集合中元素所处的位置因素。然而实际上,集合中的元素位置其实是有先后之分的,按降序排列,即竞品相关度是越来越低的。

    1.5K50

    【工程应用十】基于十六角度量化的夹角余弦相似度模版匹配算法原理解析。

    根据数学中的余弦定理,a、b、c以及θ之间有如下关系:   再根据勾股定理,我们进一步展开有:   比较公式(4)和公式(3),我们可以看到两者的结果完全相同,因此,求每个点的得分也等同于求对应的梯度向量的夹角余弦...这里提出一个加速的方案,我们称之为十六角度量化的夹角余弦匹配,她的核心还是基于信息论中的香农采样定理。   我们先说一个简单的事情。   ...在我们的匹配过程中,总得分是由m个特征点各自得分累加后求平均值获取的,因此,如果各自的得分有小幅度的偏差,对总得分的影响应该很小,这样,我们可以先这样想,如果我们把0到360角度分为360等份(cos是以...360度一个周期震动的函数),即每等份的差距是1度,然后在计算α和β时,也把得到的角度四舍五入到最接近的等份,这样,我们可以提前建立起一个360*360的查找表,输入α和β的值,就能查到对应cos值了。...关于余弦相似性,正好昨天博客园也有一篇文章有涉及,大家可以参考下:十分钟搞懂机器学习中的余弦相似性

    16310

    从0到1,了解NLP中的文本相似度

    同时,线段0A和线段0B由于斜度相等,也就是夹角为0度,反映出的余弦距离就是cos(0) = 1,说明二者完全相似。...本文接下来将重点介绍基于余弦复杂度的文本相似度比较算法,和适用于海量数据的simhash文本相似度算法,并给予一定的工程实现方案。...下面介绍一个详细成熟的向量空间余弦相似度方法计算相似度算法。 原理 枯燥的原理不如示例来的简单明了,我们将以一个简单的示例来介绍余弦复杂度的原理。...那么对于上述给定的两个属性向量A 和B,其余弦相似性θ由点积和向量长度给出,其余弦相似度的计算如下所示: image.png 实现 下面我们将通过golang来实现一个简单的余弦相似度算法。...由此,我们就得到了文本相似度计算的处理流程是: 找出两篇文章的关键词; 每篇文章各取出若干个关键词,合并成一个集合,计算每篇文章对于这个集合中的词的词频; 生成两篇文章各自的词频向量; 计算两个向量的余弦相似度

    6.6K212

    Rethinking batch effect removing methods—CCA

    ,私以为和 MDS 的关系比 CCA 更近。...PCA回忆 一般介绍 PCA 都是从最大投影方差或者最小重构误差讲起,很少从类似于 MDS 的角度,感觉目前发现了一个基于 MDS 思维的理解,最大化保留样本间的余弦距离,从这个角度可以无缝衔接到所谓的...也就是尽可能保留样本与样本之间的余弦距离也就是(向量的内积也可以视作是一种 similarity 的衡量)从这个角度可以发现其实和 MDS 是比较像的。...此时我们一样考虑找到两个低维矩阵 使得 的差别要尽可能小,也就是在低维空间中保留两个数据集样本之间的余弦距离或者点积相似度。...(选取前 k 大的特征值) 总结 此时对照 Satijia 的 2019 cell 中对 seruat 中 CCA 的说明,可以看到最后的结果和上述推导相差一个奇异值的 scale。

    53840

    基于TensorFlow和OpenCV的物种识别与个体相似度分析

    在计算机视觉领域,图像相似度比较和物种识别是两个重要的研究方向。...本文通过结合深度学习和图像处理技术,使用TensorFlow中的预训练MobileNetV2模型和OpenCV,实现了物种识别和个体相似度分析。...再比较两只相同品种的狗的相似度:可以看到系统识别出了两只狗的种类相同,相似比也高达75.2%,但因为没有达到我们设置的80%的阈值,所以判断非同一个体。...同一物种的识别结果:五、实验总结本文介绍了基于OpenCV和深度学习的物种识别和个体相似度比较方法。...通过使用预训练的MobileNetV2模型进行特征提取和分类,并结合余弦相似度计算,实现了物种识别和相似度比较。此方法在计算机视觉领域具有广泛的应用前景,可以用于各种图像识别和比较任务。

    40744
    领券