首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

RGB-D图像中的目标检测

是指利用RGB-D图像数据进行目标检测的技术。RGB-D图像是一种包含颜色信息和深度信息的图像,其中RGB表示红、绿、蓝三个颜色通道的信息,而D表示深度信息。

目标检测是计算机视觉领域的一个重要任务,旨在从图像中准确地识别和定位出感兴趣的目标物体。传统的目标检测方法主要基于RGB图像进行分析,但由于RGB图像无法提供物体的准确距离信息,因此在复杂场景下容易出现误检测或漏检测的问题。

RGB-D图像中的目标检测通过结合RGB图像和深度图像的信息,能够更准确地定位和识别目标物体。深度图像提供了物体的距离信息,可以帮助解决遮挡、光照变化等问题,提高目标检测的准确性和鲁棒性。

应用场景:

  1. 机器人导航与感知:RGB-D目标检测可用于机器人导航、环境感知和避障等任务,帮助机器人准确地识别和定位周围的物体。
  2. 增强现实(AR)与虚拟现实(VR):RGB-D目标检测可用于AR和VR应用中,实现虚拟物体与真实场景的交互和融合。
  3. 自动驾驶与智能交通:RGB-D目标检测可用于自动驾驶和智能交通系统中,实现对行人、车辆等目标的准确检测和跟踪。
  4. 工业自动化与智能制造:RGB-D目标检测可用于工业自动化和智能制造领域,实现对零部件、产品等目标的检测和质量控制。

推荐的腾讯云相关产品: 腾讯云提供了一系列与云计算和人工智能相关的产品和服务,以下是一些推荐的产品:

  1. 腾讯云视觉智能(https://cloud.tencent.com/product/tci):提供了图像识别、人脸识别、图像搜索等功能,可用于RGB-D图像中的目标检测。
  2. 腾讯云物联网平台(https://cloud.tencent.com/product/iotexplorer):提供了物联网设备管理、数据采集与分析等功能,可用于与RGB-D传感器进行数据交互和管理。
  3. 腾讯云人工智能开放平台(https://ai.qq.com):提供了多种人工智能能力,如图像识别、目标检测等,可用于RGB-D图像中的目标检测任务。

总结: RGB-D图像中的目标检测利用RGB和深度信息相结合,能够提高目标检测的准确性和鲁棒性。在机器人导航、增强现实、自动驾驶、工业自动化等领域具有广泛的应用前景。腾讯云提供了相关的产品和服务,可用于支持RGB-D图像中的目标检测任务。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

深度学习时代下的RGB-D显著性目标检测研究进展

摘要:受人类的视觉注意力机制启发,显著性目标检测任务旨在定位给定场景中最吸引人注意的目标或区域。近年来, 随着深度相机的发展和普及, 深度图像已经被成功应用于各类计算机视觉任务, 这也为显著性目标检测技术提供了新思路。通过引入深度图像, 不仅能使计算机更加全面地模拟人类视觉系统, 而且深度图像所提供的结构、位置等补充信息也可以为低对比度、复杂背景等困难场景的检测提供新的解决方案。鉴于深度学习时代下RGB-D显著目标检测任务发展迅速,旨在从该任务关键问题的解决方案出发,对现有相关研究成果进行归纳、总结和梳理,并在常用RGB-D SOD数据集上进行不同方法的定量分析和定性比较。最后, 对该领域面临的挑战及未来的发展趋势进行总结与展望。

04

2D-Driven 3D Object Detection in RGB-D Images

在本文中,我们提出了一种在RGB-D场景中,在目标周围放置三维包围框的技术。我们的方法充分利用二维信息,利用最先进的二维目标检测技术,快速减少三维搜索空间。然后,我们使用3D信息来定位、放置和对目标周围的包围框进行评分。我们使用之前利用常规信息的技术,独立地估计每个目标的方向。三维物体的位置和大小是用多层感知器(MLP)学习的。在最后一个步骤中,我们根据场景中的目标类关系改进我们的检测。最先进的检测方法相比,操作几乎完全在稀疏的3D域,在著名的SUN RGB-D实验数据集表明,我们建议的方法要快得多(4.1 s /图像)RGB-D图像中的3目标检测和执行更好的地图(3)高于慢是4.7倍的最先进的方法和相对慢两个数量级的方法。这一工作提示我们应该进一步研究3D中2D驱动的目标检测,特别是在3D输入稀疏的情况下。

03

机器人抓取汇总|涉及目标检测、分割、姿态识别、抓取点检测、路径规划

最近读了一些关于机器人抓取相关内容的文章,觉得甚是不错,针对一些方法和知识点,做下总结。本文综述了基于视觉的机器人抓取技术,总结了机器人抓取过程中的四个关键任务:目标定位、姿态估计、抓取检测和运动规划。具体来说,目标定位包括目标检测和分割方法,姿态估计包括基于RGB和RGBD的方法,抓取检测包括传统方法和基于深度学习的方法,运动规划包括分析方法、模拟学习方法和强化学习方法。此外,许多方法共同完成了一些任务,如目标检测结合6D位姿估计、无位姿估计的抓取检测、端到端抓取检测、端到端运动规划等。本文对这些方法进行了详细的综述,此外,还对相关数据集进行了总结,并对每项任务的最新方法进行了比较。提出了机器人抓取面临的挑战,并指出了今后解决这些挑战的方向。

04

EF-Net一种适用于双流SOD的有效检测模型(Pattern Recognition)

显著目标检测(SOD)在计算机视觉领域得到了广泛的关注。但面临低质量的深度图,现有模型的检测结果都不是很理想。为了解决这一问题,该文提出了一种新型多模态增强融合网络(EF-Net),用于有效的RGB-D显性检测。具体来说,首先仅仅利用RGB图像提示映射模块来预测提示映射,编码突出对象的粗略信息。然后利用得到的提示图经过深度增强模块来增强深度图,从而抑制噪声并锐化对象边界。最后,该文构造了分层聚合模块,用于融合增强后的深度图与RGB图像中提取的特征,以精确地检测突出对象。该文提出的EFNet利用增强和融合框架进行显着性检测,充分利用了RGB图像和深度图中的信息,有效地解决了深度图的低质量问题,显著提高了显着性检测性能。在五个广泛使用的基准数据集上的广泛实验表明,该方法在五个关键评价指标方面优于12种最先进的RGB-D显着性检测方法。

01

基于2.5/3D的自主主体室内场景理解研究

摘要随着低成本、紧凑型2.5/3D视觉传感设备的出现,计算机视觉界对室内环境的视景理解越来越感兴趣。本文为本课题的研究提供了一个全面的背景,从历史的角度开始,接着是流行的三维数据表示和对可用数据集的比较分析。在深入研究特定于应用程序的细节之前,简要介绍了在文献中广泛使用的底层方法的核心技术。之后根据基于场景理解任务的分类,回顾了所开发的技术:包括全局室内场景理解以及子任务,例如场景分类、对象检测、姿势估计、语义分割、三维重建、显著性检测、基于物理的推理和提供性预测。随后,总结了用于评估不同任务的性能指标,并对最新技术进行了定量比较。最后对当前面临的挑战进行了总结,并对需要进一步研究的开放性研究问题进行了展望。

01

Object Detection in Foggy Conditions by Fusion of Saliency Map and YOLO

在有雾的情况下,能见度下降,造成许多问题。由于大雾天气,能见度降低会增加交通事故的风险。在这种情况下,对附近目标的检测和识别以及对碰撞距离的预测是非常重要的。有必要在有雾的情况下设计一个目标检测机制。针对这一问题,本文提出了一种VESY(Visibility Enhancement Saliency YOLO)传感器,该传感器将雾天图像帧的显著性映射与目标检测算法YOLO (You Only Look Once)的输出融合在一起。利用立体相机中的图像传感器对图像进行检测,利用雾传感器激活图像传感器,生成深度图来计算碰撞距离。采用去雾算法对基于区域协方差矩阵的显著性图像帧进行质量改进。在改进后的图像上实现了YOLO算法。提出的融合算法给出了Saliency Map和YOLO算法检测到的目标并集的边界框,为实时应用提供了一种可行的解决方案。

01

EF-Net一种适用于双流SOD的有效检测模型(Pattern Recognition)

显著目标检测(SOD)在计算机视觉领域得到了广泛的关注。但面临低质量的深度图,现有模型的检测结果都不是很理想。为了解决这一问题,该文提出了一种新型多模态增强融合网络(EF-Net),用于有效的RGB-D显性检测。具体来说,首先仅仅利用RGB图像提示映射模块来预测提示映射,编码突出对象的粗略信息。然后利用得到的提示图经过深度增强模块来增强深度图,从而抑制噪声并锐化对象边界。最后,该文构造了分层聚合模块,用于融合增强后的深度图与RGB图像中提取的特征,以精确地检测突出对象。该文提出的EFNet利用增强和融合框架进行显着性检测,充分利用了RGB图像和深度图中的信息,有效地解决了深度图的低质量问题,显著提高了显着性检测性能。在五个广泛使用的基准数据集上的广泛实验表明,该方法在五个关键评价指标方面优于12种最先进的RGB-D显着性检测方法。

02

基于点云 / RGBD的3D视觉检测技术

3D视觉技术相较于2D视觉能获取更丰富更全面的环境信息,已经成为机器人导航、无人驾驶、增强/虚拟现实、工业检测等领域的关键技术.当前基于2D的的计算机视觉技术日趋成熟,在很多领域取得了很不错的进展,但我们真实的世界是三维空间,利用2D的技术对真实世界进行建模存在先天的缺陷——深度信息缺失,我们不能从2D图片中获得物体的绝对尺度和位置,而这一点在点云中不会存在问题.“从单幅图像到双目视觉的3D目标检测算法”介绍了基于单目(monocular)视觉以及双目(binocular)视觉的3D目标检测算法,单目做3D检测完全是数据驱动,通过机器学习模型结合摄影几何的约束去拟合3D空间的数据分布;双目视觉会有额外的视差信息,可以重建出景深信息,所以可以得到比单目视觉更强的空间约束关系,在3D目标检测任务重的精度相比单目会更好.

02
领券