首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【科学计算包NumPy】NumPy数组的创建

科学计算包 NumPy 是 Python 的一种开源的数值计算扩展库。它包含很多功能,如创建 n 维数组(矩阵)、对数组进行函数运算、数值积分等。...NumPy 常用的导入格式: import numpy as np 一、创建数组对象   通常来说, ndarray 是一个通用的同构数据容器,即其中的所有元素都需要相同的类型。...:用于创建一个 n*n 的单位矩阵(主对角线元素全为1,其余全为0的矩阵) 格式:np.identity(n, dtype=float) b1 = np.identity(3) # 必须是n阶方阵..., order='C) 参数名称 说明 N int型,代表返回的矩阵的行数是N M int型,代表返回的矩阵的列数是M(默认是None) k int型,k=0代表是主对角线,k每增加1就往上移动一位对角线...choice 函数原型:numpy.random.choice(a, size=None, replace=True, p=None) choice 函数表示从给定一维数组 a 或由 n 确定的 arange

11000

初探numpy——数组的创建

numpy创建数组 使用array函数创建数组 import numpy as np array=np.array([1,2,3]) print(array) [1 2 3] 使用numpy.empty...方法创建数组 numpy.empty方法可以创建一个指定形状、数据类型且未初始化的数组 numpy.empty(shape , dtype = float , order = 'C') 参数 描述 shape...方法创建数组 numpy.zeros方法可以创建一个指定大小的数组,数组元素以0来填充 numpy.zeros(shape , dtype = float , order = 'C') 参数 描述 shape...使用numpy.ones方法创建数组 numpy.ones方法可以创建一个指定大小的数组,数组元素以1来填充 numpy.ones(shape , dtype = float , order = 'C'...使用numpy.eye方法创建数组 numpy.eye方法可以创建一个正方的n*n单位矩阵(对角线为1,其余为0) array=np.eye(3) print(array) [[1. 0. 0.

1.7K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据分析-NumPy内置函数创建数组

    背景介绍 今天学习使用numpy的内置函数arange()、ones()、zeros()、linspace() 等内置函数创建数组,对于使用数据结构和多维列表非常有用,可以节省大量的时间。 ?...import numpy as np# ### 使用np.zeros(shape)创建数组,默认数据类型为float# In[2]:arr = np.zeros((2,3))print(arr) # #...## 使用dtype指定创建数组的数据类型# In[3]:arr = np.zeros((2,3),dtype=int)print(arr)# ### 使用np.ones(shape)创建数组# In[...# In[8]:#linspace函数基于我们指定的元素数量自动计算步长值arr = np.linspace(1, 3, 6)print(arr)# ### 我们还可以创建一个充满常量值的数组使用np.full...(shape,value)# In[11]:arr = np.full((2,2),8)print(arr)# ### 创建一个单位矩阵使用np.eye(size)# In[12]:arr = np.eye

    65110

    PYTHON替代MATLAB在线性代数学习中的应用(使用Python辅助MIT 18.06 Linear Algebra学习)

    接受Python原生的数组当做向量和矩阵 # 除非特别注明,我们的示例都在交互方式使用Python # 每一行开始的“>>>”就是交互方式下Python给出的提示符 >>> v1c = [1,2] >>...NumPy的很多方法都接受使用Python内部数组作为参数来表达向量和矩阵,所以给人的印象,这些类型之间没有什么区别。...NumPy内置的数组类型和矩阵类型,在简单运算中都能得到正确的结果,可以用于常用的计算。但实际上很多高级函数及算法,对两种类型的处理仍然存在很大区别,就类似示例中出现的矩阵乘法。...获取矩阵的特定行向量和列向量,在NumPy/SymPy中都是重载了Python语言的列表(数组)操作符,所以方法都是相同的。...幸运的是,SymPy直接提供了矩阵对角化的函数: #直接使用上面numpy的矩阵 >>> a1=sp.Matrix(a) >>> S,D=a1.diagonalize() >>> S

    5.5K51

    numpy中数组操作的相关函数

    在numpy中,有一系列对数组进行操作的函数,在使用这些函数之前,必须先了解以下两个基本概念 副本 视图 副本是一个数组的完整拷贝,就是说,先对原始数据进行拷贝,生成一个新的数组,新的数组和原始数组是独立的...在使用函数和方法时,我们首先要明确其操作的是原始数组的副本还是视图,然后根据需要来做选择。...一个基本的例子如下 >>> import numpy as np >>> a = np.arange(12) >>> a array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10...数组的转置 数组转置是最高频的操作,在numpy中,有以下几种实现方式 >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9,...中,实现同一任务的方式有很多种,牢记每个函数的用法是很难的,只需要挑选几个常用函数数量掌握即可。

    2.1K10

    资源 | 从数组到矩阵的迹,NumPy常见使用大总结

    支持高效的多数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。NumPy 的科学计算十分高效,因此弥补了 Python 在运算效率上的不足。...下面,我们分别创建了一个 Python 数组和 NumPy 数组: # python array a = [1,2,3,4,5,6,7,8,9] # numpy array A = np.array([...我们可以使用 reshape() 函数将该数组转化为我们想要的维度,如下,我们将 B 的形状转化为 3×3,reshape() 方法将会返回一个多维数组,因此它的左右分别有两个方括号。...NumPy 数组的索引方式和 Python 列表的索引方式是一样的,从零索引数组的第一个元素开始我们可以通过序号索引数组的所有元素。...为了定义两个形状是否是可兼容的,NumPy 从最后开始往前逐个比较它们的维度大小。在这个过程中,如果两者的对应维度相同,或者其一(或者全是)等于 1,则继续进行比较,直到最前面的维度。

    8.5K90

    numpy通用函数:快速的逐元素数组函数

    某些简单函数接受了一个或者多个标量数值,并产生一 个或多个标量结果,而通用函数就是对这些简单函数的向量化封装。...(数组)) # 返回正的平方根 print(np.exp(数组)) # 计算每个元素的自然指数值e的x次方 介绍一下二元通用函数:比如 add 和 maximum 则会接受两个数组并返回一个数组结尾结果...import numpy as np # 创建示例数组 arr = np.array([1, 2, 3, 4, 5]) # 数学函数示例 result = np.square(arr) # 计算每个元素的平方...自定义ufuncs : 介绍如何创建和使用自定义ufuncs。这可以包括定义自己的元素级操作,并将其封装成通用函数,以便在整个数组上进行快速操作。这对于特定领域的定制功能非常有用。...从数学运算到逻辑操作,NumPy通用函数为数据科学家和数值计算从业者提供了强大的工具,使得处理大规模数据集变得轻而易举。

    35510

    Python 数学应用(一)

    array例程从类似数组的对象创建 NumPy 数组,这通常是一组数字或一组(数字)列表。...数组创建函数zeros和ones可以通过简单地指定一个具有多个维度参数的形状来创建多维数组。 矩阵 NumPy 数组也可以作为矩阵,在数学和计算编程中是基本的。矩阵只是一个二维数组。...主对角线由从矩阵左上角到右下角的线上的元素*a[ii]*组成。 NumPy 数组可以通过在array对象上调用transpose方法轻松转置。...要创建这样的矩阵,我们可以使用sparse中的数组创建例程之一,例如diags,这是一个用于创建具有对角线模式的矩阵的便利例程: T = sparse.diags([-1, 2, -1], (-1, 0...(或 SciPy)的linalg模块中找到的接受稀疏矩阵而不是完整 NumPy 数组的例程,例如eig和inv。

    18000

    Python Numpy基础:数组的创建与基本属性

    从Python列表或元组创建数组 最基本的创建数组的方法是将Python的列表或元组转换为Numpy数组。这是通过np.array()函数来实现的。...从列表创建一维数组 import numpy as np # 从列表创建一维数组 arr1 = np.array([1, 2, 3, 4, 5]) print("一维数组:", arr1) 输出结果...使用内置函数创建特殊数组 Numpy提供了许多内置函数,可以方便地创建特殊的数组,例如全零数组、全一数组、单位矩阵、随机数组等。...使用arange、linspace和logspace创建数组 Numpy还提供了生成数值序列的函数,如arange、linspace和logspace,这些函数特别适用于创建具有固定步长或等间距数值的数组...讨论了从列表和元组创建数组、使用内置函数创建特殊数组、以及使用arange、linspace和logspace生成数值序列的不同方法。

    21910

    numpy的堆叠数组函数stack()、vstack()、dstack()、concatenate()函数详解

    Contents 1 numpy常用堆叠数组函数 2 stack()函数 3 vstack()函数 4 hstack()函数 5 np.concatenate() 函数 6 参考资料 numpy常用堆叠数组函数...在做图像和nlp数组数据处理的时候,经常要实现两个数组堆叠或者连接的功能,这经常用numpy库的一些函数实现,常用于堆叠数组的numy函数如下: stack : Join a sequence of...vstack函数原型是vstack(tup),功能是垂直的(按照行顺序)堆叠序列中的数组。...(tup) ,参数tup可以是元组,列表,或者numpy数组,返回结果为numpy的数组。...注意concatenate函数使用最广,必须在项目中熟练掌握。 参考资料 numpy中的hstack()、vstack()、stack()、concatenate()函数详解

    2.6K20

    三个NumPy数组合并函数的使用

    在 numpy 中合并数组比较常用的方法有 concatenate、vstack 和 hstack。...在介绍这三个方法之前,首先创建几个不同维度的数组: import numpy as np # 创建一维数组 x = np.array([1, 2, 3]) y = np.array([3, 2, 1]...) z = np.array([666, 666, 666]) # 创建二维数组 A = np.array([[1, 2, 3], [4, 5, 6]]) B = np.array...待合并的数组除了待合并的维度,其余维度上的值必须相等。二维数组(矩阵)有两个 axis,一个 axis = 0(行方向),一个 axis = 1(列方向),如果是多维数组依次类推。...vstack 和 hstack 我们在实际开发中,比较常用的操作就是对二维或者三维数组进行行和列的合并操作,所以 numpy 为我们提供了更加方便的 vstack 和 hstack。

    2K20

    机器学习入门 3-5 Numpy数组(和矩阵)的基本操作

    首先导入 numpy 包 import numpy as np 通过 arange 函数创建一个一维数组 x x = np.arange print(x) ''' array([0, 1, 2,...子数组与原数组 在 Python 中对列表进行切片实际上创建了新的列表,而 Numpy 优先考虑效率,所以在 numpy 中,如果修改了子数组,那么相应的原数组也会发生改变,反之亦然。...(切片的子数组通过引用与原数组建立联系,而不是创建新的数组) # 通过切片生成子数组 subX = X[:2, :3] print(subX) ''' array([[0, 1, 2],...], [ 10, 11, 12, 13, 14]]) ''' 如果我们需要创建一个与原数组不相关的子数组呢?...1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14]]) ''' Reshape 通过 reshape 函数修改数组的形状

    49010
    领券