首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Huggingface:导出transformers模型到onnx

    二 关于onnx ONNX(开放神经网络eXchange)项目是一个开放标准,它定义了一组通用的运算符和一种通用的文件格式,以表示各种框架中的深度学习模型,包括PyTorch和TensorFlow。...三 transformers中的onnx包 3.1 onnx包简介 transformers 提供了transformers.onnx包,通过使用这个包,我们可以通过利用配置对象将模型检查点转换为ONNX...这些配置对象是为许多模型体系结构准备的,并且被设计为易于扩展到其他体系结构。...warnings.warn( 除了一些提示和模型的config.json等配置文件之外,与官方示例基本一致。上述命令导出由--model参数定义的检查点的ONNX图。.../transformers-qa onnx/ 要导出本地存储的模型,我们需要将模型的权重和标记器文件存储在一个目录中。

    2.7K10

    【杂谈】一招,同时可视化18个开源框架的网络模型结构和权重

    ONNX (.onnx, .pb, .pbtxt) Keras (.h5, .keras) Core ML (.mlmodel) Caffe (.caffemodel, .prototxt) Caffe2...PaddlePaddle (.zip, __model__) Darknet (.cfg) scikit-learn (.pkl) TensorFlow.js (model.json, .pb) TensorFlow...2 可视化实验 下面我们就来尝试几个框架的可视化结果,首先要祭出有三AI开源的12大深度学习开源框架的项目,从模型和数据接口定义,到训练测试可视化,提供了全套代码,地址如下: https://github.com...2.2 keras keras的可视化输入是json格式的模型文件,可以通过model.to_json()将模型存储下来,然后载入.json文件。 ?...2.3 tensorflow 要想可视化tensorflow的模型结构,就必须将模型存储为pb格式,这样就能同时保存网络结构和参数了,结果如下。 ?

    1.3K20

    如何将PyTorch、TensorFlow模型转换为PaddlePaddle模型

    实验步骤: 3.1 PyTorch模型转换为onnx模型 定义一个py文件名为trans.py,具体代码如下: #coding: utf-8 import torch #import torchvision...='cpu')) # 5.导出onnx模型文件 torch.onnx.export(model, dummy_input, "nasnet.onnx",verbose=True) note:如果你想转换自己的模型...将TensorFlow模型转换 为PaddlePaddle模型 注:model.pb为TF训练好的模型,pb_model为转换为PaddlePaddle之后的文件。 1....实验步骤: 首先训练TF网络,并保存成pb文件。本教程的主要目的是如何转换自己训练的TF模型到Paddle模型,所以只搭建了Lenet5这个最简单的网络。...目前,X2Paddle中支持TF保存的pb模型,但是需要注意的是,在保存pb模型的时候,只需要导出前向计算部分(即模型预测部分,不需要训练部分回传的网络结构)。为了方便大家,模型保存的函数如下。

    2.7K20

    TensorFlow:使用Cloud TPU在30分钟内训练出实时移动对象检测器

    要查看Object Detection API支持的所有模型的列表,请查看下方链接(model zoo)。提取检查点后,将3个文件复制到GCS存储桶中。...运行以下命令下载检查点并将其复制到存储桶中: cd / tmp curl -O http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1...我们将使用配置文件执行此操作,我们将在下一步中设置该配置文件。我们的配置文件为我们的模型提供超参数,以及我们的训练数据、测试数据和初始模型检查点的文件路径。...机器学习模型的输出是一个二进制文件,其中包含我们模型的训练权重 - 这些文件通常非常大,但由于我们将直接在移动设备上提供此模型,我们需要将其设置到尽可能小。 这时就要用到模型量化。...要告诉ML Engine在哪里找到我们的训练和测试文件以及模型检查点,你需要在我们为你创建的配置文件中更新几行,以指向你的存储桶。

    4K50

    OpenVINO部署加速Keras训练生成的模型

    要把Keras框架训练生成的h5模型部署到OpenVINO上,有两条技术路线: 选择一: 把预训练权重文件h5转换pb文件,然后再转为OpenVINO可以解析的IR文件 选择二: 把预训练权重文件h5转为...从Keras到ONNX 先说一下我的版本信息 - Tensorflow2.2.0 - Keras2.4.3 - OpenVINO2021.02 - Python3.6.5 - CUDA10.1 ?...怎么从Keras的h5权重文件到ONNX格式文件,我还是很白痴的存在,但是我相信ONNX格式生态已经是很完善了,支持各种转ONNX格式,所以我搜索一波发现,github上有个很好用的工具Keras2ONNX...然后我从github上找了个Keras全卷积语义分割网络的源码库,下载了预训练模型,通过下面的几行代码完成了从h5权重模型文件到ONNX格式文件的转换 # Load model and weights...ONNX格式的模型文件,ONNX格式转换成功。

    3.2K10

    如何将自己开发的模型转换为TensorFlow Lite可用模型

    从一个简单的模型开始 首先,我想选择一个未经过预先训练或转换成.tflite文件的TensorFlow模型,理所当然我选择使用MNIST数据训练的简单的神经网络(目前支持3种TFLite模型:MobileNet...这是我创建的一张图表,展示了如何从一个转换到另一个,一步一步解释这中间涉及到的东西。 ? 从MNIST训练脚本中,我们得到文本可读形式(.pbtxt)的Graph Def、检查点和保存的图形。...我们关心的是GraphDef和检查点文件。在训练脚本的命令中,保存这些文件的文件夹位于/tmp/mnist_saved_model下。...(安装说明) 打开检查点文件并确定最新的文件。...附录 使用Tensorboard 我创建了一个修改版本的import_pb_to_tensorboard.py,以支持导入图形定义(.pb)、图形定义文本(.pbtxt)和保存模型(.pb)文件类型。

    3.1K41

    Tensorflow + OpenCV4 安全帽检测模型训练与推理

    模型训练 基于faster_rcnn_inception_v2_coco对象检测模型实现迁移学习,首先需要配置迁移学习的config文件,对应的配置文件可以从: research\object_detection...训练过程中可以通过tensorboard查看训练结果: 模型导出 完成了40000 step训练之后,就可以看到对应的检查点文件,借助tensorflow object detection API框架提供的模型导出脚本...,可以把检查点文件导出为冻结图格式的PB文件。...相关的命令行参数如下: 得到pb文件之后,使用OpenCV4.x中的tf_text_graph_faster_rcnn.py脚本,转换生成graph.pbtxt配置文件。...最终得到: - frozen_inference_graph.pb - frozen_inference_graph.pbtxt 如何导出PB模型到OpenCV DNN支持看这里: 干货 | tensorflow

    2.5K20

    如何用TensorFlow和Swift写个App识别霉霉?

    所谓检查点就是一个二进制文件,包含了训练过程中在具体点时TensorFlow模型的状态。下载和解压检查点后,你会看到它包含3个文件: ?...此外,还需要在 bucket 中创建 train/ 和 eval/ 子目录——在执行训练和验证模型时, TensorFlow 写入模型检查点文件的地方。...在我的 train/bucket 中,我可以看到从训练过程的几个点中保存出了检查点文件: ? 检查点文件的第一行会告诉我们最新的检查点路径——我会从本地在检查点中下载这3个文件。...如果想运行如下脚本,你需要定义到达你的MobileNet 配置文件的本地路径,从训练阶段中下载的模型检查点的数量,以及你想将导出的图表写入的目录的名字: # Run this script from tensorflow...上传 save_model.pb 文件(不用管其它的生成文件)到你的 Cloud Storage bucket 中的 /data 目录中。

    12.1K10
    领券