首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Winbugs中个体变异性内具有相关性和复杂性的随机截距和斜率模型

Winbugs是一个用于贝叶斯统计建模和推断的软件工具。它提供了一个灵活的框架,用于构建和分析统计模型。在Winbugs中,个体变异性内具有相关性和复杂性的随机截距和斜率模型主要用于解决具有多层次结构数据的建模问题。

个体变异性是指在统计模型中,个体之间存在差异的情况。具体来说,个体变异性内具有相关性和复杂性的随机截距和斜率模型用于描述不同个体之间在随机截距和斜率上的相关性,并考虑到这些相关性的复杂性。

随机截距和斜率模型的分类是基于模型中的随机效应变量的数量和类型。常见的分类包括一元模型、多元模型和多层次模型。一元模型是指只有一个随机效应变量的模型,多元模型是指存在多个随机效应变量的模型,而多层次模型是指模型中包含多个层次的随机效应变量。

个体变异性内具有相关性和复杂性的随机截距和斜率模型在许多领域都有广泛的应用。例如,在教育研究中,可以使用该模型来建模学生在不同学校、不同班级之间的学习成绩差异。在医学研究中,可以使用该模型来研究不同医院、不同医生之间的治疗效果差异。在社会科学研究中,可以使用该模型来分析不同地区、不同群体之间的行为差异。

对于该模型,在腾讯云中,可以使用Tencent Machine Learning Platform for AI(腾讯AI机器学习平台)来进行建模和推断。该平台提供了强大的机器学习算法和工具,支持贝叶斯统计建模,并提供了丰富的文档和示例代码供用户参考。您可以在以下链接中找到有关腾讯AI机器学习平台的更多信息:

腾讯云产品介绍链接:https://cloud.tencent.com/product/tmwp

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 与内在功能连接个体变异性相关的基因表达

    研究表明,内在功能连接(FC)中的个体间变异性(ISV)与各种各样的认知和行为表现相关。然而,ISV在FC中的潜在组织原理及其相关基因转录谱尚不清楚。使用静息态功能磁共振成像数据从人类连接组计划(299年成人被试)和艾伦人类脑图谱的微阵列基因表达数据,我们进行了转录-神经成像关联研究调查内在的ISV的空间配置及其与空间基因转录谱的关联。我们发现,FC中多模态关联皮层的ISV最大,而单模态皮层和皮层下区域的ISV最小。重要的是,偏最小二乘回归分析显示,与人类加速区(HARs)相关的基因的转录谱可以解释FC中ISV空间分布的31.29%的变异。转录谱中的顶级相关基因在中枢神经系统的发育、神经发生和突触的细胞成分中得到了丰富。此外,我们还观察到,基因转录谱对FC中ISV的异质性分布的影响是由脑血流结构介导的。这些发现强调了ISV在FC中的空间排列,以及它们与转录谱和脑血流供应变化的耦合。

    03

    Biological Psychiatry综述:人脑成像转录组学的最佳实践

    现代全脑转录图谱为研究脑组织的分子相关性提供了前所未有的机会,可以使用无创神经成像进行量化。然而,将神经影像学数据与转录组测量相结合并不是直截了当的,需要仔细考虑才能做出有效的推断。在本文中,我们回顾了最近的研究工作,探讨了不同的方法选择如何影响成像转录组学分析的三个主要阶段,包括1)转录图谱数据的处理;2)将转录测量与独立衍生的神经影像学表型相关联;3)通过基因富集分析评估鉴定的关联的功能意义。我们的目标是为这个快速发展的领域促进标准化和可复制方法的发展。我们确定了方法可变性的来源,可能影响结果的关键选择,以及减轻假阳性和/或虚假结果的考虑因素。最后,我们提供了在所有3个分析阶段实现当前最佳实践过程的免费可用的开源工具箱的概述。

    01

    大脑网络的结构-功能耦合:一种机器学习方法

    摘要:虽然大多数生物系统的功能受到其结构的严格限制,但目前的证据表明,大脑网络的结构和功能之间的耦合是相对温和的。我们的目的是研究连接体结构和功能之间的适度耦合是神经系统的基本属性还是当前脑网络模型的局限性。我们开发了一个新的深度学习框架来预测个体的大脑功能的结构体,达到的预测精度,大大超过了最先进的生物物理模型。重要的是,从个体的结构连接体预测的大脑功能解释了认知表现的显著个体间差异。我们的结果表明,人类大脑网络的结构-功能耦合比之前认为的要紧密得多。我们建立了现有的大脑网络模型可以改进的边界,并展示了深度学习如何促进大脑功能和行为之间关系的研究。

    00

    Cerebral Cortex:自闭症谱系障碍中局部连通性及其发展轨迹的变化:身为女性是否重要?

    被诊断为孤独症的男性与女性比率为4:1.这个偏差在神经影像学研究中更显著。越来越多的证据表明,自闭症谱系障碍中局部连通性及其发展轨迹发生变化。本研究旨在调查男性和女性ASD中,局部连接及其发展轨迹是怎样变化的?用ABIDE I和II数据库的静息态fMRI数据:男性ASD:女性ASD=102:92,男性正常发育(TD):女性TD=104:92,年龄6-26岁。局部连接用局部一致性量化。发现ASD躯体运动和边缘网络局部连接减少,默认模式网络局部连接增加。这些变化在女性ASD中更显著。另外,局部连接与ASD的症状联系在女性中更稳健。与其他组相比,女性ASD有最不同的局部连接发展轨迹。总之,我们的发现说明女性ASD诊断的更大的病原学负担,这与女性保护效应假设一致。

    01

    fMRI时变功能连接的数据和模型考虑

    大脑的功能连接(FC)已被证明在会话中表现出微妙但可靠的调节。估计时变FC的一种方法是使用基于状态的模型,该模型将fMRI时间序列描述为状态的时间序列,每个状态都有一个相关的FC特征模式。然而,从数据对这些模型的估计有时不能以一种有意义的方式捕获变化,这样模型估计将整个会话(或它们的最大部分)分配给单个状态,因此不能有效地捕获会话内的状态调制;我们将这种现象称为模型变得静态或模型停滞。在这里,我们的目标是量化数据的性质和模型参数的选择如何影响模型检测FC时间变化的能力,使用模拟fMRI时间过程和静息状态fMRI数据。我们表明,主体间FC的巨大差异可以压倒会话调制中的细微差异,导致模型成为静态的。此外,分区的选择也会影响模型检测时间变化的能力。我们最后表明,当需要估计的每个状态的自由参数数量很高,而可用于这种估计的观测数据数量较低时,模型往往会变成静态的。基于这些发现,我们针对时变FC研究在预处理、分区和模型复杂性方面提出了一套实用的建议。

    01

    Nature:可重复的全脑关联研究需要数千人参与

    磁共振成像(MRI)已经改变了我们对人类大脑的理解,通过对特定结构的能力(例如,损伤研究)和功能(例如,任务功能MRI (fMRI))的复制映射。心理健康研究和护理还没有从核磁共振成像中实现类似的进步。一个主要的挑战是复制大脑结构或功能的个体间差异与复杂的认知或心理健康表型之间的关联(全脑关联研究(BWAS))。这样的BWAS通常依赖于适合经典脑成像的样本量(中位神经成像研究样本量约为25),但对于捕捉可复制的脑行为表型关联可能太小了。在这里,我们使用了目前最大的三个神经成像数据集,总样本量约为50,000人,以量化BWAS效应大小和可重复性作为样本量的函数。BWAS的关联比之前认为的要小,导致了统计上的研究不足,效应大小和典型样本量的复制失败。随着样本量增加到数千个,复制率开始提高,效应大小信息减少。功能性MRI(对比结构)、认知测试(对比心理健康问卷)和多变量方法(对比单变量)检测到更强的BWAS效应。小于预期的脑表型关联和人群亚样本的变异性可以解释广泛的BWAS复制失败。与影响更大的非BWAS方法(例如,损伤、干预和个人)相比,BWAS的可重复性需要数千个人的样本。

    01

    Nat. Com. Sci.|稳定维护隐藏开关以提高基因表达的稳定性

    今天给大家介绍的是沙特阿卜杜拉国王科技大学(KAUST)高欣教授课题组(http://sfb.kaust.edu.sa)2021年1月14日发表在《Nature Computational Science》的一篇文章,“Stable maintenance of hidden switches as a strategy to increase the gene expression stability”。严重的压力下,野生型生物体可以释放出在正常条件下隐藏的替代表型,这些表型与潜在的遗传变异有关。研究人员通过使用计算模拟,分析了稳定化选择下基因电路的适应性进化。发现在最佳表达水平周围,不同的策略演化都降低了基因表达噪声的水平。为了从一个具有双稳态个体的创始种群中逐步提高基因表达稳定性,进化的方向始终是沿着提高双稳态系统潜在屏障高度的方向进行。结果表明,隐藏的表型开关可以在环境静止期间稳定地维持,有利于在发生实质性扰动时释放潜在的适应性表型选择。

    03

    Nature Methods | 针对罕见病的机器学习方法

    今天为大家介绍的是来自Casey Greene团队的一篇综述论文。高通量分析方法(如基因组学或成像)加速了基础研究,并使对患者样本的深度分子特征化成为例行程序。这些方法提供了关于参与疾病表型的基因、分子途径和细胞类型的丰富信息。机器学习(ML)可以成为从高维数据集中提取与疾病相关模式的有用工具。然而,根据生物学问题的复杂性,机器学习通常需要许多样本来识别重复出现且具有生物学意义的模式。罕见病在临床案例中天然受限,导致可供研究的样本较少。作者概述了在罕见病中使用机器学习处理小样本集的挑战和新兴解决方案。罕见病的机器学习方法的进展可能对其他具有高维数据但样本较少的应用有所启发。作者建议方法研究社区优先发展罕见病研究的机器学习技术。

    01

    Nature:相同fMRI数据集多中心分析的变异性

    一、引言 许多科学领域的数据分析工作已经变得越来越复杂和灵活,这也意味着即使相同的数据,不同研究者采用的处理方法和步骤也可能不同,那么得到的结果也不尽然一致。近期,Nature杂志发表一篇题目为《Variability in the analysis of a single neuroimaging dataset by many teams》的研究论文,该研究通过要求70个独立团队分析相同的fMRI数据集,测试相同的9个预先假设,来评估功能磁共振成像(fMRI)结果的这种灵活性的效果。分析方法的灵活性体现在没有两个团队选择相同的方式来分析数据。这种不确定性导致了假设检验结果的巨大差异。报告结果的差异与分析方法的多个方面有关。研究人员的预测市场显示,即使是了解数据集的研究人员,也过高估计了重要发现的可能性。该研究结果表明,分析的灵活性可以对科学结论产生重大影响,并在fMRI分析中识别出可能与变异性有关的因素。该研究的结果强调了验证和共享复杂分析工作的重要性,并说明了对相同数据执行和报告多重分析的必要性。此外,该研究还讨论了可用于减轻与分析变异性有关的问题的潜在方法。 二、背景 科学领域的数据分析工都有着大量的分析步骤,这些步骤涉及许多可能的选择。模拟研究表明,分析选择的不同可能对结果产生重大影响,但其程度及其在实践中的影响尚不清楚。最近的一些心理学研究通过使用多个分析人员的方法解决了这一问题。在这种方法中,大量的小组分析同一数据集,研究发现分析小组的行为结果有很大的差异。在神经影像学分析复制和预测研究(NARPS)中,该研究将类似的方法应用于分析工作流程复杂且变化多样fMRI领域。研究者的目标是以最高的生态效度来评估分析灵活性对fMRI结果的实际影响程度。此外,研究者们使用预测市场(Prediction markets)来测试该领域的同行是否能够预测结果以及估计该领域研究人员对分析结果变异性程度的信念。 三、结果 1.跨团队的结果变异性 NARPS的第一个目标是评估分析相同数据集的独立团队的结果在现实中的变异性。该数据集包括来自108个被试的fMRI数据,每个被试执行一个任务两个版本中的一个,该任务之前被用于研究风险决策。这两个版本的设计是为了解决在任务中关于增益和损耗分布对神经活动影响的争论(数据信息见原文辅助材料)。。 在向70个团队(其中69个团队以前发表过fMRI)提供了原始数据和可选的数据集预处理版本(使用fMRIPrep)后,他们被要求对数据进行分析,以测试9个事先假设(表1),每个假设都包含了与任务特定特征相关的特定脑区活动的描述。分析时间为100天的,各小组需要在全脑校正分析(Whole-brain-corrected analysis)的基础上,报告每个假设是否得到了支持(是或否)。此外,每个小组提交了一份详细的分析方法报告,以及支持每个假设检验的无阈值和有阈值统计图(表2,3a)。为了进行生态效度研究,给这些分析团队唯一的指令就是像往常在自己的实验室里一样进行分析工作,并根据他们自己的标准报告二元决策,即假设中描述的特定区域的全脑校正结果。在预测市场关闭之前,数据集、报告和集合都是保密的。

    00

    Molecular Psychiatry:三种主要精神疾病中的神经变异性

    在主要的精神疾病(MPDs)中,人们怀疑存在大脑生理学的共同破坏。在这里,我们研究了休息时的神经变异性,这是一种成熟的脑功能行为相关标记,并探索了其在MPDs的基因表达和神经递质谱中的基础。我们招募了219名健康对照组和279名患有精神分裂症、重度抑郁症或双相情感障碍(躁狂症或抑郁状态)的患者。利用从静息态功能磁共振成像中获得的血氧合水平依赖性信号的标准差(SDBOLD)来表征神经变异性。通过偏最小二乘相关法来检验SDBOLD模式的经诊断中断及其与临床症状和认知功能的关系。在临床样本之外,我们估计了观察到的SDBOLD破坏模式与死后基因表达、元分析认知功能和神经递质受体谱之间的空间相关性。发现了两种SDBOLD中断的转诊断模式。模式1在所有诊断组中都表现出来,在精神分裂症中最为明显,其特征是语言/听觉网络的SDBOLD较高,而默认模式/感觉运动网络的SDBOLD较低。相比之下,模式2仅表现在单极和双相抑郁症中,其特征是默认模式/显著性网络中SDBOLD较高,而感觉运动网络中SDBOLD较低。模式1的表达与MPDs的临床症状和认知缺陷的严重程度相关。这两种被破坏的模式与基因表达(如神经元投射/细胞过程)、元分析认知功能(如语言/记忆)和神经递质受体表达谱(如D2/5-羟色胺/阿片类受体)具有不同的空间相关性。总之,综上所述,神经变异是MPDs潜在的经诊断生物标志物,其大量空间分布可以通过基因表达和神经递质受体谱来解释。MPDs的病理生理学可以通过测量休息时的神经变异来追踪,异常变异的不同空间模式产生不同的临床认知特征。

    03

    动态功能连接揭示首发未用药精神分裂症的治疗结果

    趋同的证据表明,抗精神病药物暴露对精神分裂症患者的大脑结构和功能有显著影响,但良好治疗结果的特征仍在很大程度上未知。在这项工作中,我们旨在研究抗精神病治疗如何调节大规模的脑网络,以及纵向变化是否可以跟踪精神病理评分的改善。从上海精神卫生中心招募了34例首发drug-naïve型精神分裂症患者和28例匹配的健康对照。抗精神病药物治疗8周后,对24例患者进行再次扫描。通过系统动态功能连接(dFC)分析,我们调查了精神分裂症相关的dFC在基线时的内在改变,随后进行了一项纵向研究,通过比较基线和随访患者,来检查抗精神病治疗对这些异常的影响。我们进一步进行了结构连通性(SC)关联分析,以研究支撑dFC改变的纵向解剖变化。我们发现,在更强的网络整合为特征的dFC状态的出现中的显著的症状改善相关的增加。此外,症状的减少与一个独特的连接特征中FC可变性的增加相关,特别是在默认模式网络内的连接,以及听觉、认知控制和小脑网络与其他网络之间的连接。此外,我们观察到,治疗后,位于额上回和内侧额叶前部皮层之间的SC减少,表明dFC上正常限制的放松。综上所述,这些发现为将精神分裂症脑网络连接障碍假说从静态扩展到动态提供了新的证据。此外,我们发现的与精神分裂症神经生物学相关的神经影像学标志物可以作为预测抗精神病药物治疗结果的潜在指标。

    03

    Nature reviews neuroscience:人类丘脑对全脑信息处理的影响

    丘脑是间脑的一个小的双侧结构,它整合来自中枢神经系统许多区域的信号。这种关键的解剖位置使丘脑能够影响整个大脑的活动和适应行为。然而,传统的研究范式一直在努力将特定的功能归因于丘脑,并且在人类神经影像学文献中仍未得到充分的研究。最近分析技术的进步和对大型高质量数据集的可访问性的增加带来了一系列的研究和发现,这些研究和发现(重新)确立了丘脑作为人类认知神经科学感兴趣的核心区域,否则这个领域仍然是以皮质为中心的。从这个角度来看,我们认为使用全脑神经成像方法来研究丘脑及其与大脑其他部分的相互作用是理解信息处理系统级控制的关键。为此,我们强调了丘脑在形成一系列功能特征中的作用,包括诱发活动、区域间连通性、网络拓扑和神经元变异性,无论是在休息还是在认知任务的执行过程中。

    03

    从时间变异性角度看睡眠剥夺后的异常动态功能连接

    睡眠剥夺(SD)在现代社会非常普遍,被认为是几种临床疾病的潜在因果机制。先前的神经影像学研究已经利用磁共振成像(MRI)从静态(比较两个MRI会话[一个在SD后和一个在休息清醒后])和动态(在SD的一个晚上重复MRI)的角度探索了SD的神经机制。最近的研究主要集中在静息状态扫描时的动态脑功能组织。本研究采用一种已成功应用于许多临床疾病的新指标(时间变异性)来检测55名正常青年受试者SD后的动态功能连接。我们发现,睡眠不足的受试者在大范围的大脑区域表现出区域水平的时间变异性增加,而在几个丘脑亚区域表现出区域水平的时间变异性减少。SD后,参与者在默认模式网络(DMN)中表现出更强的网络内时间变异性,在许多子网对中表现出更强的网络间时间变异性。通过逐步回归分析发现,视觉网络和DMN之间的网络间时间变异性与精神运动者警觉测验最慢的10%反应速度呈负相关。综上所述,我们的研究结果表明,睡眠不足的受试者表现出异常的脑功能动态结构,这为研究睡眠不足的神经基础提供了新的见解,有助于我们理解临床障碍的病理生理机制。

    00

    Genome Biology | VIPER:在单细胞RNA测序中为精确的基因表达恢复进行保留变异的插补

    今天给大家介绍密歇根大学的Zhou Xiang教授等人发表在Genome Biology上的一篇文章 “VIPER: variability-preserving imputation for accurate gene expression recovery in single-cell RNA sequencing studies”。本文开发了一种方法,VIPER,在单细胞RNA测序研究中插补零值,以促进在单细胞水平上准确的转录组测量的实现。VIPER基于非负稀疏回归模型,并能够逐步推断一组稀疏的局部邻域细胞,这些细胞最能有效预测用于插补的细胞的表达水平。VIPER的一个关键特征是它保存基因表达变异的细胞的能力。几个精心设计的基于真实数据的分析实验说明了VIPER的优点。

    01

    Nature neuroscience:功能脑组织表征的挑战和未来方向

    摘要:大脑组织的一个关键原则是将大脑区域的功能整合成相互关联的网络。在休息时获得的功能MRI扫描通过自发活动中的相干波动模式,即所谓的功能连接,提供了对功能整合的见解。这些模式已被深入研究,并与认知和疾病有关。然而,这个领域是细分的。不同的分析方法将对大脑进行不同划分,限制了研究结果的复制和临床转化。这种划分的主要来源是将复杂的大脑数据简化为用于分析和解释的低维特征集的方法,这就是我们所说的大脑表征。在本文中,我们提供了不同大脑表征的概述,列出了导致该领域细分和继续形成汇聚障碍的挑战,并提出了统一该领域的具体指导方针。 1.简述 静息态MRI的研究领域是分级的,关于预处理流程、脑分区方法、后处理分析方法和端点都存在争议。这个问题的主要来源是脑表征的挑战。磁共振产生大量的高维数据,一个主要的分析任务是从测得的脑活动的巨大的复杂度中提取可解释的内容。此处我们用“脑表征”来描述这个降维过程。脑表征是一个采集的MRI数据的多层面描述,包括脑单元的空间定义(分区)和在脑单元水平提取可解释特征的总体测度(如配对相关)。如何表征脑数据从根本上奠定了脑功能和组织的描述。 脑的表征经常被考虑为映射问题,旨在消除功能和神经组织的神经解剖不同区域的边界。然而,脑表征包括了表征形式以及数据如何转化成这些表征。本文旨在为该领域的一致性和可重复性提供一个rfMRI表征挑战的入门。 2.脑表征入门 脑表征可以将采集得到的BOLD数据减少为一组特征进行分析。许多脑表征识别:1)一组低维脑单元(空间分区)2)应用在脑单元水平的一组测度组合(配对相关)。这些特征用于后面的统计或预测分析。用“脑单元”来指代任意空间上定义的神经实体,可以被当作一个基础的功能处理单元。“测度组合”作为计算特征的方法,相对于脑单元定义。组合测度用来回答研究问题,因此是相对“特定领域”的。一小部分脑表征不用脑单元和组合测度,而用估计特征,可以代表活动的复杂的时空模式。 2.1定义一个脑单元 rfMRI空间分辨率轻松可达2x2x2mm³,这会在全脑得到约100000体素。rfMRI中,这些体素(或顶点)是最小的可测脑单元。然而其并不代表具体的神经解剖层级水平。因此会将体素或顶点单元组合成更小的脑单元集合来实现有意义的低等级脑表征。 脑单元可能在空间上相邻或不相邻。相邻脑单元与功能具体皮层区域一致(图1a),不相邻脑单元可以捕捉层级组织的和大的半球对称脑的复杂网络结构(图1b)。脑单元可以是二值化(一个体素或顶点被分配到一个单元)的或加权的(体素或顶点根据其权重对多个单元有贡献)。 很多方法可以来定义脑单元。明显的选择是根据基于组织学、病变、褶皱或其他特征定义的图集的分区。但这些图集源于小部分人,且解剖上定义的边界与功能组织不一定匹配。很多方法用功能数据来定义分区,包括ICA,PCA,非负矩阵分解,概率功能模块或字典学习。这种分区依赖于自发BOLD波动,限制了其适用性。用解构、静息、任务结合的多模态方法可能提供广泛性更好的分区。

    00

    人类大脑活动的时空复杂性结构

    人类的大脑运作在大范围的功能网络中。这些网络是不同脑区域之间时间相关活动的表现,但全局网络特性和单个脑区神经动力学的关系仍然不完全清楚。本文展示了大脑的网络体系结构与神经正则性的关键时刻紧密相连,这些时刻表现为功能性磁共振成像信号中的自发“复杂性下降”,反应了脑区之间的功能连接强度,促进了神经活动模式的传播,并反映了个体之间的年龄和行为差异。此外,复杂性下降定义了神经活动状态,动态塑造了脑网络的连接强度、拓扑配置和层次结构,并全面解释了脑内已知的结构-功能关系。这些发现描绘了一种原则性的神经活动复杂性体系结构——人类的“复杂组”,它支撑着大脑的功能网络组织。

    02

    同步脑电图-功能磁共振融合推断宏观脑动力学

    同步脑电-功能性磁共振成像(EEG-fMRI)的仪器和信号处理技术的进步,为人类大脑的高时空神经动力学研究提供了更近一步的方法。脑电图-功能磁共振神经成像系统的核心功能是融合两种数据,在这个过程中,机器学习发挥着关键作用。这些方法可以分为对称和不对称两种融合方式。使用这些方法的研究表明,融合产生了对大脑功能的新认识。随着技术的进步和融合方法变得更加复杂,脑电图-功能磁共振成像(EEG-fMRI)为无创脑动力学测量带来了许多新的启示,包括:基于目标扰动的神经成像、利用深度学习发现电生理和血流动力学测量之间的非线性表征等新的研究领域。本文发表在Annual Review of Neuroscience杂志。。

    02

    fMRI中自发性短暂脑网络交互的行为相关性

    几十年来,大脑不同区域的自发波动功能磁共振成像(fMRI)信号如何与行为相关一直是一个悬而未决的问题。这些信号中的相关性,被称为功能连接,可以在几分钟的数据中求平均值,为个人提供一个稳定的功能网络体系结构的表示。然而,这些稳定的特征和行为特征之间的联系已经被证明是由个体解剖学差异所主导的。在此,我们利用核学习工具,提出了评估和比较时变功能连接、时均功能连接、大脑结构数据和非成像受试者行为特征之间关系的方法。我们将这些方法应用于人类连接体项目静息状态fMRI数据,以显示时变的fMRI功能连接,在几秒钟的时间尺度上检测到,与一些不受解剖学支配的行为特征有关。尽管时间平均的功能连接在个体间的fMRI信号变化中占最大比例,但我们发现,智力的某些方面只能用时间变化的功能连接来解释。随着时间变化的fMRI功能连通性与群体行为变异性有一种独特的关系,这一发现表明,它可能反映了稳定神经结构周围的瞬时神经元通信波动。

    03

    动态功能连接组:最新技术和前景

    静息态功能磁共振成像(fMRI)突出了在没有任务或刺激的情况下大脑活动的丰富结构。在过去的二十年里,人们一直致力于研究功能连接(FC),即大脑不同区域之间的功能相互作用,这在很长一段时间内被认为是静止的。直到最近,FC的动态行为才被揭示,表明在自发fMRI信号波动的相关模式之上,不同脑区之间的连接在一个典型的静息态fMRI实验中表现出有意义的变化。因此,大量的工作被用来评估和表征动态FC(dFC),并探索了几种不同的方法来确定相关的FC波动。同时,关于dFC的性质提出了几个问题,只有回到神经起源,才会引起人们的兴趣。为了支持这一点,建立了与脑电图(EEG)记录、人口统计学和行为数据的相关性,并探索了各种临床应用,其中可初步证明dFC的潜力。在本文中,我们旨在全面描述迄今为止提出的dFC方法,并指出我们认为对该领域未来发展最有希望的方向。讨论了dFC分析的优点和缺陷,帮助读者通过可用的方法和工具的复杂网络来确定自己的方向。本文发表在Neuroimage杂志

    02
    领券