首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Windows驱动程序IOCTL错误返回;

Windows驱动程序IOCTL错误返回是指在Windows驱动程序开发中,当使用IOCTL(Input/Output Control)进行设备控制时,可能会出现错误返回的情况。

IOCTL是一种用于设备驱动程序与用户空间应用程序之间进行通信的机制。通过发送特定的IOCTL代码和相关参数,应用程序可以向驱动程序发送控制命令,从而实现对设备的控制和管理。

当驱动程序在处理IOCTL请求时,可能会发生各种错误情况,例如参数错误、设备忙、权限不足等。这些错误会导致驱动程序无法正常执行请求的操作,需要向应用程序返回错误代码,以便应用程序进行相应的处理。

在处理IOCTL错误返回时,开发工程师需要根据具体的错误代码进行分析和处理。常见的错误代码包括但不限于:

  1. ERROR_INVALID_FUNCTION(0x1):指定的功能码无效。
  2. ERROR_INVALID_PARAMETER(0x57):指定的参数无效。
  3. ERROR_INSUFFICIENT_BUFFER(0x7A):缓冲区大小不足。
  4. ERROR_BUSY(0x10):设备忙,无法执行请求的操作。
  5. ERROR_ACCESS_DENIED(0x5):权限不足,无法执行请求的操作。

针对IOCTL错误返回的处理,可以根据具体情况采取以下措施:

  1. 检查参数:确保传递给IOCTL的参数是有效的,并符合设备要求。
  2. 错误处理:根据具体的错误代码,采取相应的错误处理措施,例如重新尝试操作、返回错误信息给应用程序等。
  3. 错误日志:记录错误信息,以便后续分析和排查问题。
  4. 异常处理:在驱动程序中实现适当的异常处理机制,以防止驱动程序崩溃或影响系统稳定性。

在云计算领域中,Windows驱动程序IOCTL错误返回的应用场景较为广泛,例如在云服务器、虚拟化平台、存储系统等领域中,驱动程序常常需要通过IOCTL与硬件设备进行交互和控制。因此,对于云计算领域的开发工程师来说,了解和掌握Windows驱动程序IOCTL错误返回的处理方法是非常重要的。

腾讯云提供了一系列与Windows驱动程序开发相关的产品和服务,例如云服务器、云硬盘、云存储等,可以满足不同场景下的驱动程序开发需求。具体产品介绍和相关链接如下:

  1. 云服务器(Elastic Compute Cloud,简称CVM):提供可扩展的虚拟服务器,支持Windows操作系统和驱动程序的部署。产品介绍链接:https://cloud.tencent.com/product/cvm
  2. 云硬盘(Cloud Block Storage,简称CBS):提供高性能、可靠的块存储服务,适用于驱动程序中对数据持久性和可靠性要求较高的场景。产品介绍链接:https://cloud.tencent.com/product/cbs
  3. 云存储(Cloud Object Storage,简称COS):提供安全、可靠的对象存储服务,适用于驱动程序中对大规模数据存储和访问的需求。产品介绍链接:https://cloud.tencent.com/product/cos

通过以上腾讯云的产品和服务,开发工程师可以在云计算环境中进行Windows驱动程序的开发和测试,并利用腾讯云的强大基础设施和服务能力,提高驱动程序的性能和可靠性。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

基于WDM的专用USB设备的驱动程序开发[通俗易懂]

1引言 目前对于诸如USB鼠标、键盘等这样的计算机标准外设,Windows系统已经提供了标准的驱动程序,用户无需再进行任何开发工作。而开发专用USB设备,需要开发专用的驱动程序。 Windows2000/XP操作系统不允许用户程序直接访问硬件设备。为了实现对硬件设备的访问和控制,必须通过操作系统所认可的驱动程序对硬件设备实现间接访问和控制。驱动程序通常被认为是操作系统的组成部分,所以,开发驱动程序有严格的规范,被认为是“计算机高手”的工作。而利用DDK进行基于WDM(Win32 Driver Model)驱动程序开发,使驱动程序的开发变成了一项比较简单的工作。 2 Win32驱动程序模型 USB设备驱动程序必须符合由Microsoft为Windows 98及其后版本所定义的Win32驱动程序模型(Win32 Driver Model,WDM)规格。这些驱动程序称为WDM驱动程序,扩展名为.sys。 WDM定义了一个基本模型,处理所有类型的数据。例如,USB类驱动程序为所有USB 设备提供了一个抽象的模型,并具有由所有客户驱动程序使用的定义好的接口。有了对所有设备类型共同的核心驱动程序模型,使驱动程序开发人员更容易从一种类型的设备移动到另外一种类型的设备上去。而且它也意味着驱动程序模型的内核实现尽可能是固定的。 USB是使用标准Windows系统USB类驱动程序访问USBDI(Windows USB驱动程序接口)的USB设备驱动程序。USBD.sys就是Windows系统中的USB类驱动程序,它使用UHCD.sys来访问通用的主控制器接口设备,或者使用OpenHCI.sys访问开放式主控制器接口设备。USBHUB.sys是根集线器和外部集线器的USB驱动程序。在PCI枚举器发现了USB主控制器之后,它会自动装入相关的驱动程序。 3 Windows USB驱动程序接口 大多数客户化的USB设备需要由用户来编写设备驱动程序,以响应内核态或用户应用程序的请求。在内核级,命令由客户驱动程序使用内部IOCTL发送给USB系统,例如IOCTL-INTERNAL-USB-SUBMIT-URB允许发出USB请求块(URB)给系统USB驱动程序。URB允许发出几个功能调用给USB系统。用户态USB实用程序也可以发出几个普通IOCTL给USB设备,目的仅仅是得到连接设备的信息。 3.1函数驱动程序 函数驱动程序(function driver)让应用程序与USB设备,通过API函数来沟通。这些API函数属于Windows的Win32子系统,Win32子系统同时也管理着执行应用程序。函数驱动程序与较低级的总线驱动程序沟通,总线驱动程序控制着硬件。 图1是应用程序与各个驱动程序,如何一起完成USB通信的结构图。当设备或子类别的要求超过类别驱动程序的能力时,会有辅助的过滤器驱动程序来类别驱动程序的能力。一个上层的过滤驱动程序位于类别驱动程序的上方。这样,从客户应用程序传来的要求,会先经过上层的过滤驱动程序,然后才传给类别函数驱动程序。一个下层的过滤驱动程序位于类别驱动程序和总线驱动程序之间,如图1。类别驱动程序会将要求传给下层的过滤驱动程序,然后再传给总线驱动程序。 图1应用程序与驱动程序完成USB通信的结构 通用串行总线驱动程序(USBD.SYS)是USB系统中负责管理通用串行总线的工作,位于主机上的一个软件。USBD负责控制所有的USB协议操作和高层的中断处理控制。在Windows98及以上版本中,Microsoft定义了一个新的设备驱动程序模型,称之为Windows设备驱动程序模型(WindowsDriver Model或WDM)。 USB客户应用程序也是一种设备驱动程序,通过定义的一个称之为USB接口的层间接口来访问其下方的USB软件。应用程序正是通过这些USB客户软件来实现与USB设备之间的通信。 针对USB客户应用程序的开发,相应版本的Windows操作系统的设备驱动程序开发包(Device Driver Developer’s Kit,即DDK)给出了相应的USB接口函数。并提供了对于这些函数具体使用的参考文档。 3.2 USBDI的IOCTL 为了编写USB设备驱动程序,通常还要在源代码中包含DDK所提供的几个头文件。这些头文件在Windows98下存放在/98DDK/inc/win98目录中,在Windows 2000下存放在/NTDDK/inc/win2000目录中。这些头文件的用途可以总结如下: usb100.h 定义了在USB设备驱动程序设计中所要用到的各种常量和数据结构。 Usbdi.h USBDI例程,其中包括对USBD和USB设备驱动程序通用的数据结构,适用于内核和用户模式。 Usbdlib.h URB构造和各种例程,定义了USBD所输出的服务,适用于内核和用户模式。 Usbioctl.h 给出了对IOC

02

WDM 驱动程序开发[通俗易懂]

1.概述 引入了全新的WDM (Win32 Driver Model)的驱动程序架构,说是新技术,其实早在1997年Microsoft就提出了该项技术并在Windows 98中得到了充分的应用,换句话说,Windows 98也支持WDM。这样WDM就成为了一个跨平台的驱动程序模型不仅如此WDM驱动程序还可以在不修改源代码的情况下经过重新编译后在非Intel平台上运行。 2.WDM设备驱动程序的特点和原理2.1通用驱动程序对基本上一样的硬件,因为他们共享一个总线或完成类似的任务,设备驱动程序可以使用这些标准的驱动程序功能,使公共总线的共享容易,且更容易写出新的驱动程序,总线驱动程序,如USB、1394,和类驱动程序。(1)Win32程序接口: 可以使用Win32函数像访问文件那样访问设备CreateFile() 、Closehandle()、ReadFile()、WriteFile()、DeviceIoControl()用于发出特殊请求,可发送数据给驱动和从驱动得到数据,IOCTL代码可以是预先定义的也可是自己定义的。(2)创建设备 大多数WDM设备对象都是在PnP管理器中调用AddDevice入口时创建,这个PnP 例程在插入新设备和安装Inf文件时被调用,此后一系列的PnP IRP被发送到驱动程序,指示设备应如何启动和查询它的功能2.2WDM-的工作原理WDM是在NT 4.0驱动程序结构上发展起来的,所以它与NT 4.0驱动程序极为相似 ,但是它却有了本质上的提高,比如它支持USB、IEEE 1394、ACPI等全新的硬件标准。 虽然Windows 98与Windows 2000都支持WDM,可是并不意味着Windows 98下的VxD可以在 Windows 2000下运行,而NT下的WDM却可以在Windows 98下运行。不过原先准备在两个平台上同时运行需要编写两个截然不同的驱动程序,而现在只需要编写一个WDM驱动程序就 可以了。同NT 4.0驱动程序一样,WDM驱动程序也是分层的,即不同层上的驱动程序有着不同的优先权,而Windows 9x下的VxD则没有此结构。另外,WDM还引入了功能设备对象 FDO(functional device object)与物理设备对象PDO(physical device object)两 个新概念来描述硬件,一个PDO代表一个真实硬件,在驱动程序看来则是一个FDO 。 另外值得注意的是,一个硬件只允许有一个PDO,但却可以拥有多个FDO,而在驱动程序中我们不是直接操作硬件而是操作相应的PDO与FDO。在Ring-3与Ring-0通讯方面,操作系统为每一个用户请求打包成一个IRP(IO Request Packet)结构,将其发送至驱动程序并通过识别IRP中的PDO来识别是发送给哪一个设备的。另外,在驱动程序的加载方面WDM既不靠驱动程序名称也不靠一个具有某种特殊意义的ID,而是依靠一个128位的GUID来识别驱动程序(Windows下许多东西都是靠此进行识别的)。 2.3 IRP处理 I/O请求包IRP是驱动程序操作的中心,IRP是一个内核对象,它是预先定义好的数据结构,带有一组对它进行操作的I/O管理器例程,I/O管理器接受一个I/O请求,然后将它传送到合适的驱动程序栈中的最高驱动程序之前,分配并处始化一个IRP,每个I/O请求有主功能代码 2.4 IRP参数比如一个写的I/O请求转换成一个IRP时,I/O管理器填写主要的IRP首部,并构造第一个个栈单元,对写请求来讲,首部包含用户缓冲区信息,而栈单元则包含写的具体参数。如果调用另一个驱动则必须创建下一个栈单元。一个IRP到栈顶时,使用PIO_STACK_LOCATION IoGetCurrentIrpStackLocation( IN PIRP Irp );IoGetCurrentIrpStackLocation returns a pointer to the caller’s stack location in the given IRP。如决定需要把这个IRP沿设备栈向下传递,使用IoCopyCurrentIrpStackLocationToNext or IoSkipCurrentIrpStackLocation简单的将内容复制到下一个单元,如果要更改下一个栈单元,要使用LOCATION IoGetNextIrpStackLocation(IN PIRP Irp );IoGetNextIrpStackLocation gives a higher level driver access to the next-lower driver’s I/O stack location in an IRP so the caller can set it up for the l

02

为什么反作弊阻碍了超频工具

对于读者而言,这是一个简短的参考信息,它不是来自与作弊/反作弊/驱动程序或相关技术有关的深厚技术背景。引起我们注意的是,许多人想知道为什么当玩家打开超频/调谐软件时某些反作弊功能会阻止或记录日志。首先,我将解释为什么这些类型的软件需要驱动程序,然后显示一些示例说明为什么它们很危险,并提供有关危险代码回收的信息,这些代码使最终用户容易受到攻击。出于最终用户的方便而回收代码的风险,这是一个懒惰的决定,可能会导致系统损坏。在这种情况下,将从kernelmode.info,OSR Online等站点中回收代码。该软件使用的驱动程序特别有问题,如果要开发大量的人,这将是我要寻找的第一个目标-由于下面提供的工具,游戏玩家和技术爱好者将是一大群。这绝不是一个详尽的清单,我只讲了一些在作弊社区中已经被利用的驱动程序。野外有几十个甚至数百个。让我们用这些类型的软件介绍驱动程序的原因。

0142
领券