学习
实践
活动
专区
工具
TVP
写文章

首发:人脸识别世界杯榜单出炉,微软百万名人识别竞赛冠军分享

【新智元导读】业界公认人脸识别“世界杯”的微软百万名人识别竞赛 MS-Celeb-1M 结果出炉:百万名人识别子命题,Panasonic-新加坡国立大学合作夺得第一,CIGIT和中科院合作队伍与美国东北大学位列第二第三 最后,竞赛识别单一训练样本的名人子命题的冠军团队成员分享了他们的思路方法和参赛经验。 同时宣布的还有 MS-Celeb-1M 百万人脸识别挑战赛。参赛者需要根据(但不限于)挑战赛提供的数据集作为训练数据,开发图像识别系统,从脸部图像中识别 100 万个名人。 微软百万名人识别竞赛 MS-Celeb-1M:填补学术界与工业界的空白 人脸识别竞赛有很多,微软的百万名人识别挑战赛与已有的竞赛有什么不同? 新智元:为什么要参加微软 MS-Celeb-1M 百万名人识别竞赛? NUS-Panasonic:微软百万名人识别竞赛是业界公认的人脸识别年度“世界杯”。

86260

Jeff Dean:谷歌大脑背后的“大脑” | AI名人

为了解惑,《AI名人堂》将汇聚领航者智慧,和你一起探索前行的方向。 而这距离谷歌 AI 中国中心成立还不到 7 个月,距离谷歌的另一大高层变动——Jeff Dean 成为 Google AI 的真正负责人,更不足两个月。 据了解,即使是没有机器学习专业知识的小白,也能快速借助这项服务搭建定制化的图像识别模型。 其实,按照 Dean 的话来讲,「自己并非机器学习领域的专家,更擅长的是在计算机系统领域。」 人工智能带来的巨大机遇,正通过 Google 开放的技术资源和产品工具,让越来越多的开发者将 AI 应用到自己的产品中,进一步普世 AI。 继去年 Google AI中心落地中国之后,Google 相继宣布将在法国巴黎、甚至非洲大陆上设立 AI 研究中心,继续扩张人工智能版图。

64830
  • 广告
    关闭

    热门业务场景教学

    个人网站、项目部署、开发环境、游戏服务器、图床、渲染训练等免费搭建教程,多款云服务器20元起。

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    专访云知声黄伟:场景定义芯片,未来所有场景都需要AI | AI名人

    为了解惑,《AI名人堂》将汇聚领航者智慧,和你一起探索前行的方向。 作者 | 杨丽 出品 | AI科技大本营 2015 年,有投资人跟云知声创始人/ CEO 黄伟说:“老黄啊,你要专注赛道,做好语音识别就够了。” 不过,他并没有听。 深度学习在于需要大量的数据进行训练,很快,云知声就发布了自己的“语音识别公有云”,短短不过一年,平台上就已经有 1000 名开发者加入。 如语音识别,数据量从 1 万小时增长到 10 万小时,准确率会提高 1%~2%,但这差别应该不是很大。如果此时还仅靠深度学习技术按照传统的方式训练数据,基本很难树立更高的技术壁垒。 在他看来,主要有以下三点因素: 首先,图像识别和语音识别都是数据驱动的。自然语义理解在知识上就存在一个不确定性。 其次,自然语义理解,同样一段话,不同的人读都会得到不同的感受。

    41220

    ai行为识别技术监控

    ai行为识别技术监控系统软件是一种以行为识别技术为关键技术的深度学习算法,根据人工智能化神经元网络,构造大家的主要模块架构,ai行为识别技术监控 依据我们的轨迹测算各种各样健身运动行为,根据视频转码技术 、流媒体播放技术、数字矩阵技术、云技术等,ai行为识别技术监控拍照的各类现场作业人员的异常行为,帮助监控工作人员提高解决各类出现异常紧急事件的效率。 ai行为识别技术监控具备普遍的应用领域,可以用在智能交通、智能化施工工地、智能制造系统、智慧校园、智能化生态公园等。只需有视频监控的地区,就可以完成覆盖识别分析。 ai行为识别技术监控是一种极致的视觉检测系统,应用人工智能视频分析优化算法对视频图象开展即时解析和识别,将监测到的信息与管理者给予的监控规则相对比,并即时消息推送信息和预警信息。 ai行为识别技术监控剖析,可以在紧急状况下开展预警信息,该技术关键完成了对视频监控具体内容数据的分析和获取主要信息内容,并在标识后产生警示。

    14620

    使用 GAN 网络生成名人照片

    本文为 AI 研习社编译的技术博客,原标题为 Celebrity Face Generation using GANs (Tensorflow Implementation),作者 Shubham Sharma 使用GANs 生成名人图像 ? 名人图片数据集 CelebA数据集是超过200,000个带注释的名人面部图像的集合。 因为在这个博客中,我只是想生成面孔所以我没有考虑注释。 鉴别器的工作是识别哪个图像是真实的,哪个是假的。鉴别器也是具有批量归一化、lekeay Relu的4层 CNN(输入层除外)。鉴别器接收输出图像(大小为28 * 28 * 3)并对其进行卷积。 训练和结果 当训练过程正在进行时,生成器产生一组图像,并且在每个 epoch 之后,它变得越来越好,使得鉴别器不能识别它是真实图像还是假图像。 结果生成如下 ? ?

    16410

    AI图像识别_头像搜索图片识别在线

    使用百度AI图像识别提供的API接口来搭建识图工具,首先要注册百度开发者账号,然后找到图像识别页面,创建应用,申请成功后会给两个重要的数据API Key ,Secret Key,这是实现识图的重要参数, 以动物识别为例: 获取access_token接口 import urllib, urllib2, sys import ssl # client_id 为官网获取的AK, client_secret -8') response = urllib2.urlopen(request) content = response.read() if (content): print(content) 识别图像接口 QFileDialog import json import base64 import urllib import urllib.request """ 你的 APPID AK SK """ # http://ai.baidu.com ()) pass # 货币识别 elif self.comboBox.currentIndex() == 5: self.get_currency(self.get_token()) pass # 花卉识别

    60410

    Azure AI 服务之语音识别

    笔者在前文《Azure AI 服务之文本翻译》中简单介绍了 Azure 认知服务中的文本翻译 API,通过这些简单的 REST API 调用就可以轻松地进行机器翻译。 该程序会以不同的模式识别我们 hardcode 的两段音频数据,然后输出识别的结果。其中上面的文本框会输出大量的中间识别结果,而下面的文本框则输出最终的识别结果。 我们在程序中通过定义的常量来保存它们: const string SUBSCRIPTIONKEY = "your bing speech API key"; 由于 demo 的代码比较长,为了能集中精力介绍 Azure AI 代码中我们要通过它们来告诉语音识别 API 执行识别的类型。 AI 的兴起让我们看到了一线希望,在介绍了 Azure AI 的语音识别服务后,让我们接着探索如何通过 AI 让程序理解文本的内容。

    64020

    AI行为识别视频监控系统

    伴随着科技的发展,AI行为识别视频监控系统在安防监控行业也得到了长足的进步。尤其是,AI行为识别视频监控系统方面的公司将动态性认知能力视作公司发展的核心技术之一。 传统的视频检测技术在这方面的功能很差,同一台监控摄像头可以识别的出现异常行为十分比较有限。AI行为识别视频监控系统来自机器视觉技术的革新。机器视觉技术应用是人工智能技术分析的一个支系。 人工智能技术行为识别可以精确识别情景当中人员的异常行为,而传统化的安防监控是各种各样情景转变后形成的视频,不可以精确识别人的实际出现异常行为。 AI行为识别视频监控系统可以将身体的运作可以包含走动、蹲、坐、跳、跑等进行数据分析,这些行为是人们日常生活的基础方式,这种方式的表現可以使我们得到许多信息内容,如识别经常或长期闭上眼可以识别人们总想睡觉 ,可以运用于安全驾驶危险驾驶警示;在引喻动作中,OK手势可以识别为取得成功或提前准备进行等信息内容;可以看得出,合理的有效识别可以传递很多的信息内容,随后在AI行为识别视频监控系统等行业充分发挥至关重要的智能化和信息内容功效

    38130

    关注

    腾讯云开发者公众号
    10元无门槛代金券
    洞察腾讯核心技术
    剖析业界实践案例
    腾讯云开发者公众号二维码

    相关产品

    • 人脸融合

      人脸融合

      腾讯云神图·人脸融合通过快速精准地定位人脸关键点,将用户上传的照片与特定形象进行面部层面融合,使生成的图片同时具备用户与特定形象的外貌特征,支持单脸、多脸、选脸融合,满足不同的营销活动需求……

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券