因为B+树没有与内部节点相关的数据,所以更多的key可以安装在内存页上。因此,为了访问在叶节点上的数据,将需要更少的cache miss(高速缓存未命中)。 B+树的叶节点是链接的,所以对树中的所有对象进行全扫描只需要一次线性遍历所有叶节点。另一方面,B树需要遍历树中的每一层。这种全树遍历可能会涉及比B+叶的线性遍历更多的高速缓存未命中。 B+树的叶子节点由一条链相连,而B树的叶子节点各自独立。 使用B+树的好处 由于B+树的内部节点只存放键,不存放值,因此,一次读取,可以在内存页中获取更多的键,有利于更快地缩小查找范围。 针对以上两个问题,B+树诞生了,B+树相比B树,本质上是一样的,区别就在与B+树的所有根节点都不带有任何数据信息,只有索引信息,所有数据信息全部存储在叶子节点里,这样,整个树的每个节点所占的内存空间就变小了 那么,我们最后再总结一下B+树的优点: (1) B+树的磁盘读写代价更低 B+的内部结点并没有指向关键字具体信息的指针。因此其内部结点相对B树更小。
B树的产生是为了: 解决因为大量数据时,红黑树/二叉查找树的深度太深,如数据库的索引数据存放在磁盘上,而如果使用红黑树的话,深度太深,每一个查找一个节点都需要寻道+磁盘读写
个人网站、项目部署、开发环境、游戏服务器、图床、渲染训练等免费搭建教程,多款云服务器20元起。
那么,为了使读取性能尽可能高,磁盘中的数据必须是有序的。这就是B+树的原理,但是写起来就很糟糕,因为会产生大量的随机IO,磁盘寻道速度跟不上。 关于b树 B+树最大的性能问题是会产生大量的随机io。 新插入的数据存储在磁盘上,会产生大量的随机写IO。 例如,Oracle 的常用索引使用 B+ 树。下面是一个B+树的例子 根节点和分支节点很简单,记录每个叶子节点的最小值,用指针指向叶子节点。 关于lsm树 LSM 树本质上是读写之间的平衡。与B+树相比,它牺牲了部分读取性能来提高写入性能。 读取的时候,因为我们不知道数据在哪棵树上,所以必须遍历所有的树,但是每棵树中的数据都是有序的。 以上就是LSM树最本质的原理,有了原理,再看具体的技术就很简单了: 关于lsm内存结构,可以是B+树,还可以为跳跃表(skip-list)或是一个有序字符串表(SSTables)。
但B树在经过多次插入与删除后,有可能导致不同的结构: ? M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并; B+树 B+树是B-树的变体,也是一种多路搜索树: 1.其定义基本与B-树同,除了: 2.非叶子结点的子树指针与关键字个数相同 B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在 非叶子结点命中),其性能也等价于在关键字全集做一次二分查找; B+的特性: 1.所有关键字都出现在叶子结点的链表中 4.更适合文件索引系统; B*树 是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针; ? ;B+树总是到叶子结点才命中; B*树:在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率从1/2提高到2/3;
1.减少磁盘的IO 2.更快的搜索算法 操作系统中, 管理内存是按照页page 4K 管理的 管理磁盘是按照block 16K 现在有n = 1000w个索引需要从磁盘中进行读取和搜索? avl树和m为300的B-树? avl树的高度:log2n = 24层 最差的情况一个节点只存储一个索引? 最差需要24次磁盘IO B-树高度:log(300)n = 3 层 最多花费3次磁盘IO B+树 B+树是B-树的一种变形 非叶子结点只存储索引,不存储数据 B+树的叶子结点包含全部的关键字信息 ,而B-树的数据分散在各个结点当中。 B+树存放的索引项相对于B-树能够存储的更多。 B*树 B*树是B+树的变体,在B+树的非根和叶子结点在增加指向兄弟结点的指针 B*提高了结点的利用率。
B树、B+树、B*树——简单介绍 强烈推介IDEA2020.2破解激活,IntelliJ 【3】文件系统及数据库系统的设计者利用磁盘预读(预先读取)原理,将一个节点的大小设置为页<page:数据读取的最小单位>的大小(通常为4k),这样每个节点只需要一次 IO就能载入内存;B树(B+树)广泛应用于文件存储系统及数据库文件系统中 拆后仍需要满足上述条件; ■ 对于三节点的子树的值的大小仍然遵循(BST:二叉排序树)的规则; 2-3 树的插入和删除节点案例:链接 B-Tree树即B(Balanced:平衡)树,有人将B-Tree 三、B树、B+树、B*树 ---- 【1】B树介绍:前面介绍的2-3、2-3-4树就是 B树,在 MySql 中经常听说某种索引是基于 B树、B+树的,如下图: ? 【2】B+树介绍:B+ 树是B树的变体,也是一种多路搜索树,如下图: ? 【3】B* 树介绍:B* 树是B+树的变体,在B+树的非根和非叶子节点增加了指向兄弟的指针,如下图: ?
B树和B+树都是用于外查找的数据结构,都是平衡多路查找树。 两者的区别 在B+树中,具有n个关键字的结点含有n棵子树,即每个关键字对应一颗子树;而在B树中,具有n个关键字的结点含有(n+1)棵子树。 在B+树中,除根节点外,每个结点中的关键字个数n的取值范围是[m/2]~m,根节点n的取值范围是2~m;而在B树中,除根节点外,其他所有非叶结点的关键字个数n的取值范围是[m/2]-1~m-1,根节点n B+树中的所有叶结点包含了全部关键字,即其他非叶结点中的关键字包含在叶结点中;而在B树中,关键字是不重复的。 B+树中的所有非叶结点仅起到索引的作用,即结点中的每个索引项只含有对应子树的最大关键字和指向该子树的指针,不包含该关键字对应记录的存储地址;而在B树中,每个关键字对应一个记录的存储地址。 通常在B+树上有两个头指针,一个指向根节点,另一个指向关键字最小的叶结点,所有叶结点链接成一个不定长的线性链表,所以B+树可以进行随机查找和顺序查找;而B树只能进行随机查找。
(2). 2-3-4树: 和2-3树的区别就是,它还允许节点有三个元素且有四个子节点。 4. B树: B是balance,平衡的意思,所以,B树首先是一棵平衡树,而平衡树首先得是一棵排序数。 B+树: B+树是B树的变体,和B树的区别就是,B+树所有数据都存放在叶子节点。 B+树所有的数据都存放在叶子节点的链表中,且链表中的数据也是有序的; 非叶子节点中存放的是索引,而不是要操作的数据,每个非叶子节点都会存放叶子节点的索引,也叫稀疏索引; B+树要进行搜素时,从根节点开始 ,通过与根节点索引的比较,就知道要往左子树查找还是往中间查找还是往右子树查找,到了子树的时候再通过与子树中存放的索引比较,又可以直到要往那一边查找。 B+树一般用于文件系统; 6. B*树: B*树又是B+树的变体,就是在B+树的基础上,在非根非叶子节点之间增加了指向兄弟节点的指针。
要是那个人说b树和b-树不一样 那你可以认为他是zz了hh,b树就是b-树 说起来b树的发明主要是为了减少磁盘io操作 将树的结构设计成矮胖型而不是瘦高型,因为数据库索引是存储在磁盘上的,当数据量比较大时 ,我们不能把所有索引加载到内存中,只能逐一加载每一个磁盘页,这里的磁盘页对应索引树的节点 一个m阶的B树具有如下几个特征: 1.根结点至少有两个子女。 5.每个节点中的元素从小到大排列,节点当中k-1个元素正好是k个孩子包含的元素的值域分划。 ? 一个m阶的B+树具有如下几个特征: 1.有k个子树的中间节点包含有k个元素(B树中是k-1个元素),每个元素不保存数据,只用来索引,所有数据都保存在叶子节点。 下图是一个b+树( b-树改造加链表) ?
二叉树的 I/O 次数分析 先说 I/O 次数: 其实相比于二叉树,B 树、B+树, CPU 的运算次数并没有变化,甚至增多。 B/B+树的索引数量 B 树的节点中存储:指针、关键字(主键)、数据 B+ 树的非叶子节点:指针、关键字 B+树的叶子节点:指针(链表)、关键字、数据 注意,这里不是绝对的,比如有的 B+ 树中叶子节点存储的不是数据 而且上述是假设数据为 1KB,如果数据没那么大,高度为 3 的 B 树能存储更多的数据,但是如果用在大型数据库索引上还是不够。 B+ 树: B+树 如上图,B+树的核心在于非叶子节点不存储数据。 高度为 3 的 B+ 树进行两次 I/O 就可以索引千万级别的数据,高度为 4 的 B+ 树,进行 3 次 I/O 就能索引十亿级别的数据量,这个效果还是很好的。 B/B+树的优点 更适合磁盘存储,减少了树的层级,进而减少 I/O 次数; B 树和 B+ 树对比 都是 B 树,但是 B+树更适合范围查询,比如 Mysql,且查询次数很稳定,为 logn。
引言 时隔一年,我又想起当初看数据库时,看到的B+树,就是数据库的索引使用的数据结构。再整理一下,看看自己没有忘记很多吧。 概述 B+树之前,先来看一下二叉查找树(1,2,3,4,5,6,7) ? 但想想数据库查找数据的场景: select * from user where id > 10, 显然,对于这种查找区间来说,二叉查找树并不高效。那么B+树是如何解决这个问题的呢? 没错,这就是B+树。 这个结构是怎么想出来的我不知道啊,但是我今天突然发现,他的存储方式和跳表十分之像啊。莫非是受到了跳表的启发?亦或是跳表受到了B+树的启发?咱也不知道。 引申 很好,B+树整明白了,新的问题出现了。如果数据库使用这种数据结构存储,全部放到内存中肯定是不现实的,势必要将其存储到硬盘中,待查找时再到文件中读取。 B+树是不是分叉越多越好 那肯定不是越多越好啊,要是一层就把所有数据都存储了,要他还有什么用,根本没有起到快速定位的作用。 但我想说的并不是这。
三、B+树 B+树是B-树的变体,也是一种多路搜索树,其定义基本与B树相同,除了: 非叶子结点的子树指针与关键字个数相同; 非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1 四、B树与B+树的对比 B和B+树的区别在于,B+树的非叶子结点只包含导航信息,不包含实际的值,所有的叶子结点和相连的节点使用链表相连,便于区间查找和遍历。 2、B+树的优点 由于B+树在内部节点上不好含数据信息,因此在内存页中能够存放更多的key。 数据存放的更加紧密,具有更好的空间局部性。 因此访问叶子几点上关联的数据也具有更好的缓存命中率; B+树的叶子结点都是相链的,因此对整棵树的便利只需要一次线性遍历叶子结点即可。而且由于数据顺序排列并且相连,所以便于区间查找和搜索。 而B树则需要进行每一层的递归遍历。相邻的元素可能在内存中不相邻,所以缓存命中性没有B+树好。 3、应用 B树和B+树经常被用于数据库中,作为MySQL数据库索引。
与本blog之前介绍的红黑树很相似,但在降低磁盘I/0操作方面要更好一些。许多数据库系统都一般使用B树或者B树的各种变形结构,如下文即将要介绍的B+树,B*树来存储信息。 B树与红黑树最大的不同在于,B树的结点可以有许多子女,从几个到几千个。那为什么又说B树与红黑树很相似呢? 一棵m阶的B+树和m阶的B树的异同点在于: 1.有n棵子树的结点中含有n-1 个关键字; (此处颇有争议,B+树到底是与B 树n棵子树有n-1个关键字 保持一致,还是不一致:B树n棵子树的结点中含有 这也佐证了咱们之前的观点。删除操作完。 7.总结 通过以上介绍,大致将B树,B+树,B*树总结如下: B树:有序数组+平衡多叉树; B+树:有序数组链表+平衡多叉树; B*树:一棵丰满的B+树。 Bucket Li:"mysql 底层存储是用B+树实现的,知道为什么么。内存中B+树是没有优势的,但是一到磁盘,B+树的威力就出来了"。
什么是B+树 B+树是B-树的变体,也是一种多路搜索树 4.1 B+树的特点 其定义基本和特性与B-树同,除了: 1.非叶子结点的子树指针与关键字个数相同 2.非叶子结点的子树指针P[i],指向关键字值属于 比起B-树,B+树所有的节点数值都会出现在叶子节点中 并且,所有叶子节点组成了一个增序的链表 4.2 B+树的查询 查询数值11 ? 4.3 B+树的插入 插入数值16 ? 4.4 B+树的删除 删除值16 ? 5. 什么是B*树 是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针 B*树定义了非叶子结点元素个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2) B*的查询、插入和删除操作和 ,且只出现一次,非叶子结点可以命中; B+树:在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中; B*树:在B+树基础上,为非叶子结点也增加链表指针
目前常见的主要的三种存储引擎是:哈希、B+树、LSM树。LSM下次再说,hash讲过了。 没有什么B-树,那是 B-tree,国内一直翻译成B-树,其实就是B树。 B树我也不想说了,因为已经被升级过了,叫B+树。 下图来自 小灰的算法之旅,懂得人自然就懂了: ---- 对比一下B树: 这个是B树。 ---- B+树对于B树的改进 1、所有数据都在叶子节点。算法更容易理解了。回头抽空手写一下B+树,正好跳表也要重写了。 2、底层叶子节点使用链表串起来了。 这第二个改进不可谓不秀。 单这么看自然是不明所以的,但是凡事都要放在上下文中去看,B+树的上下文对应的就是磁盘IO的索引呐,那如果我要范围查询呢?比如说我要上面树里面 4-10 的所有数据,B 树怎么作为?B+树怎么作为? ---- 代码实现 先占个位置,这几天是没办法了,有更重要的事情安排上了。忙完这两周,十月说什么也要安排上。
文章首发于「陈树义」公众号及个人博客 shuyi.tech,欢迎访问更多有趣有价值的文章。 B+树 B+ 树是应文件系统所需而产生的 B 树的变形树。 与 B 树相比,B+ 树有着如下的好处: B+ 树的磁盘读写代价更低 B+ 树的内部结点并没有指向关键字具体信息的指针,所以其内部结点相对 B 树更小。 B+ 树查询效率更加稳定 由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以 B+ 树中任何关键字的查找必须走一条从根结点到叶子结点的路。 B+ 树便于范围查询(最重要的原因,范围查找是数据库的常态) B 树在提高了 IO 性能的同时,并没有解决元素遍历效率低下的问题。为了解决这个问题,B+ 树应用而生。 B+ 树只需要去遍历叶子节点就可以实现整棵树的遍历。在数据库中基于范围的查询是非常频繁的,因此 MySQL 的 Innodb 引擎就使用了 B+ 树作为其索引的数据结构。
B树详解以及B+树与B树的不同 数据结构 —— B树和B+树 1. 背景 最近在学习数据库相关的知识,了解到数据库很多是采用B-/+树作为索引,例如Mysql的InnoDB引擎使用的B+树、MongoDB默认采用B树作为索引。 B树,概括来说是一个一般化的二叉查找树(binary search tree)一个节点可以拥有2个以上的子节点。与自平衡二叉查找树不同,B树适用于读写相对大的数据块的存储系统,例如磁盘。 B+树 4.1 B+树的特征 有 m 个子树的中间节点包含有 m 个元素(B 树中是 k-1 个元素),每个元素不保存数据,只用来索引; 所有的叶子结点中包含了全部关键字的信息,及指向含有这些关键字记录的指针 (而 B 树的非终节点也包含需要查找的有效信息); 参考 B 树、B + 树详解 B树- 维基百科,自由的百科全书
2️⃣从应用层次来分:普通索引,唯一索引,复合索引 3️⃣根据中数据的物理顺序与键值的逻辑(索引)顺序关系:聚集索引,非聚集索引。 就像手机分类:安卓手机,IOS手机 与 华为手机,苹果手机,OPPO手机一样。 二、索引的底层实现 mysql默认存储引擎innodb只显式支持B-Tree( 从技术上来说是B+Tree)索引,对于频繁访问的表,innodb会透明建立自适应hash索引,即在B树索引基础上建立hash 在InnoDB中的实现 ? ? 三、问题 问:为什么索引结构默认使用B-Tree,而不是hash,二叉树,红黑树? hash:虽然可以快速定位,但是没有顺序,IO复杂度高。 二叉树:树的高度不均匀,不能自平衡,查找效率跟数据有关(树的高度),并且IO代价高。 红黑树:树的高度随着数据量增加而增加,IO代价高。 问:为什么官方建议使用自增长主键作为索引。
B+树 B+树是对应数据库所需而出现的一种B树的变形树。 区别 在B+树中,具有n个关键字的结点只含有n棵子树,即每个关键字对应一棵子树;而在B树中,具有n个关键字的结点含有n+1棵子树。 在B+树中,每个结点(非根内部结点)的关键字个数n的范围是【m/2】<=n<=m(根节点:1<=n<=m); 在B树中,每个结点(非根叶结点)的关键字个数n的范围是【m/2】-1<=n<=m-1(根节点 在B+树中,叶结点包含信息,所有非叶结点仅起索引作用,非叶节点中的每个索引项只含有对应子树的最大关键字和指向该子树的指针,不含有该关键字对应记录的存储地址。 在B+树中,叶结点包含了全部关键字,即在非叶结点中出现的关键字也会出现在叶结点中;而在B树中,叶结点包含的关键字和其他结点包含的关键字是不重复的。
备份一体机(TStor B2000)是将备份功能、容灾功能、存储功能和服务器硬件融合于一体的企业级数据保护产品,定位于解决混合云场景下的数据存储。TStor B2000支持本地与云端数据的协同,为用户数据提供云下快速备份恢复、云上容灾、云上归档、云上云下灾难恢复等功能,可以轻松解决混合云场景下的各种数据存储和管理问题。
扫码关注腾讯云开发者
领取腾讯云代金券